给定一个加权的,连通的,简单的无向图G,每条边上的权重仅为1和2
我想以这种方式实施Prim's algorithm:
权重是1或2,所以我可以简单地将边缘存储在2个单独的列表中,一个用于权重为1的边缘,第二个用于权重为2的边缘。
要找到权重最低的边,我只需从第一个列表中取一个,除非它是空的,在这种情况下,我从第二个列表中取一个边。
访问和删除列表中的元素是O(1),因此Prim的算法将在O(V + E)中运行。
package il.ac.oranim.alg2016;
import edu.princeton.cs.algs4.*;
public class MST12 {
private int weight; // weight of the tree
private Edge[] mstEdges; // use this to store the edges of your Minimum Spanning Tree
public MST12(EdgeWeightedGraph G, int s) throws IndexOutOfBoundsException, DisconnectedGraphException, WrongWeightException {
// check that the starting vertex is in the range 0,1,...,G.V()
if (s < 0 || s >= G.V()) {
throw new IndexOutOfBoundsException();
}
// check that the input graph is connected otherwise there is no (minimum) spanning tree
if (isConnected(G) == false) {
throw new DisconnectedGraphException();
}
// check that all the weights are 1 or 2
for (Edge e : G.edges()) {
if (e.weight() != 1 && e.weight() != 2) {
throw new WrongWeightException();
}
}
this.weight = 0; // make sure you update this value
// replace -->
// your code goes here
// <-- replace
}
// returns the weight of the tree
public int weight() {
return this.weight;
}
// checks whether a graph is connected
private static boolean isConnected(EdgeWeightedGraph G) {
// create a graph of class Graph with the same edges (weights)
Graph g = new Graph(G.V());
for (Edge e : G.edges()) {
int v = e.either();
g.addEdge(v, e.other(v));
}
// compute the connected components of the graph
CC cc = new CC(g);
// return true iff there is only one connected component
return cc.count() == 1;
}
/**
* Returns the edges in a minimum spanning tree as
* an iterable of edges
*/
public Iterable<Edge> edges() {
Queue<Edge> edges = new Queue<Edge>();
for (int i = 0; i < this.mstEdges.length; i++) {
Edge e = this.mstEdges[i];
int v = e.either();
edges.enqueue(new Edge(v, e.other(v), e.weight()));
}
return edges;
}
/**
* test the computing of an MST of a graph with weights 1 and 2 only
* the first argument is the name of the file that contains the graph (graph1.txt, graph2.txt, or graph3.txt)
* you can define this argument in Run.. --> (x)=Arguments
*/
public static void main(String[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
PrimMST primMST = new PrimMST(G);
MST12 mst12 = null;
try {
mst12 = new MST12(G,0);
}
catch (DisconnectedGraphException e) {
System.err.println("the input graph is not connected and hence has no (minimum) spanning tree");
}
catch (WrongWeightException e) {
System.err.println("not all weights in the input graph are 1 or 2");
}
System.out.println("Prim's MST weight = " + primMST.weight());
System.out.println("My MST's weight = " + mst12.weight());
}
}
我被困在
的部分//replace-->//your code goes here//replace<--
需要的两个类:
package il.ac.oranim.alg2016;
public class DisconnectedGraphException extends Exception {
public DisconnectedGraphException() {}
}
和
package il.ac.oranim.alg2016;
public class WrongWeightException extends Exception {
public WrongWeightException() {}
}
我也允许使用所有http://algs4.cs.princeton.edu/code/
有人可以通过这部分
来帮助我//replace-->//your code goes here//replace<--
我尝试将This代码复制到//<--relpace,//replace-->
部分,然后将其复制到其中,将其从使用堆更改为两个列表。
Pseudocode of Prim's algorithm
换句话说,我需要代码:
答案 0 :(得分:2)
首先,使用在O(| E | log(| V |))中运行的优先级队列实现普通的Prim算法。并自己动手而不是复制书的代码。如果您不能自己实现Prim算法,那么您无法理解如何扩展到算法。
然后,作为D.W.在https://cs.stackexchange.com/questions/66498/prims-algorithm-on-graph-with-weights-of-only-1-and-2-on-each-edge建议您可以将ExtractMin,Remove和Insert函数更改为O(1)。
这个想法是你可以保留权重1和2的边缘列表。如果边权重1的列表不为空,那么你可以通过弹出O中的列表来获得下一个最佳边缘(1 ) 时间。如果边权重1的列表为空,则可以通过在O(1)时间内弹出权重列表2来获得下一个最佳边。
普通Prim算法的唯一变化是你需要的是这样的数据结构:
private class SpecialPQ {
ArrayList<NodeWeightPair> _queueWeight1 = new ArrayList<NodeWeightPair>();
ArrayList<NodeWeightPair> _queueWeight2 = new ArrayList<NodeWeightPair>();
public void insert(NodeWeightPair e) {
if (e._weight == 1) {
_queueWeight1.add(e);
}
else {
_queueWeight2.add(e);
}
}
public void remove() {
if (_queueWeight1.size() == 0) {
_queueWeight2.remove(_queueWeight2.size()-1);
}
else {
_queueWeight1.remove(_queueWeight1.size()-1);
}
}
public NodeWeightPair extractMin() {
if (_queueWeight1.size() > 0) {
return _queueWeight1.get(_queueWeight1.size()-1);
}
else {
return _queueWeight2.get(_queueWeight2.size()-1);
}
}
public boolean empty() {
return _queueWeight1.size() == 0 && _queueWeight2.size() == 0;
}
};
Normal Prim的算法使用二进制堆优先级队列来获得O(| E | log(| V |))。您只需用更快的SpecialPQ
替换二进制堆优先级队列。
所以这本书的代码有这一行:
private IndexMinPQ<Double> pq;
您只需将其更改为
即可private SpecialPQ pq;
并获取其余代码进行编译。不要真正复制和粘贴SpecialPQ
的代码。这需要你花很长时间才能让它与书中的代码兼容。相反,我认为您应该编写自己的SpecialPQ
,它将与您自己的Prim算法实现一起使用。
我在本地有一个工作示例 - 我自己的实现,因此它与本书的代码不兼容。如果您发布尝试执行此操作,我会与我分享。
编辑:
NodeWeightPair
private class NodeWeightPair {
private int _parent;
private int _node;
private int _weight;
public NodeWeightPair(int parent, int node, int weight) {
_node = node;
_weight = weight;
_parent = parent;
}
}
答案 1 :(得分:0)
package il.ac.oranim.alg2016;
import edu.princeton.cs.algs4.*;
public class MST_12
{
private int weight; // weight of the tree
private Edge[] mstEdges; // MST edges
private boolean[] marked;// MST vertices
private Queue<Edge> queueWeight1;
private Queue<Edge> queueWeight2;
public MST_12(EdgeWeightedGraph G, int s) throws IndexOutOfBoundsException, DisconnectedGraphException, WrongWeightException
{
// check that the starting vertex is in the range 0,1,...,G.V()
if (s < 0 || s >= G.V()) {
throw new IndexOutOfBoundsException();
}
// check that the input graph is connected otherwise there is no (minimum) spanning tree
if (isConnected(G) == false) {
throw new DisconnectedGraphException();
}
// check that all the weights are 1 or 2
for (Edge e : G.edges()) {
if (e.weight() != 1 && e.weight() != 2) {
throw new WrongWeightException();
}
}
this.weight = 0; // make sure you update this value
// replace -->
queueWeight1 = new Queue<Edge>();
queueWeight2 = new Queue<Edge>();
mstEdges=new Edge[G.V()];
marked=new boolean[G.V()];
for (int v = 0; v < G.V(); v++) // run from each vertex to find
if (!marked[v]) KPrim(G,v);// minimum spanning forest
}
private void KPrim ( EdgeWeightedGraph G, int s)
{
visit(G,s);
while (!queueWeight1.isEmpty()||!queueWeight2.isEmpty()){
Edge e=null;
if (!queueWeight1.isEmpty())
{ e=queueWeight1.dequeue();}
else if (!queueWeight2.isEmpty()){e=queueWeight2.dequeue();}
int v=e.either(), w=e.other(v);
assert marked [v]||marked [w];
if(marked[v]&&marked[w]) continue;
mstEdges[s]=e;
weight+=e.weight();
if(!marked[v]) visit(G,v);// v becomes part of tree
if(!marked[w]) visit(G,w);// w becomes part of a tree
}
}
//add all edges e incident to v onto queue if the other endpoint has not yet been scanned
private void visit (EdgeWeightedGraph G, int v)
{
marked[v]=true;// add v to T
for (Edge e : G.adj(v))// for each edge e=v-w, add to queueWeight if w not already in T
{
if(!marked[e.other(v)]) {
if (e.weight()==1.0) {queueWeight1.enqueue(e);mstEdges[v]=e;}//add the smallest edge weight to the mst weight
else {queueWeight2.enqueue(e);mstEdges[v]=e;}}}
}
// <-- replace
// returns the weight of the tree
public int weight() {
return this.weight;
}
// checks whether a graph is connected
private static boolean isConnected(EdgeWeightedGraph G) {
// create a graph of class Graph with the same edges (weights)
Graph g = new Graph(G.V());
for (Edge e : G.edges()) {
int v = e.either();
g.addEdge(v, e.other(v));
}
// compute the connected components of the graph
CC cc = new CC(g);
// return true iff there is only one connected component
return cc.count() == 1;
}
/**
* Returns the edges in a minimum spanning tree as
* an iterable of edges
*/
public Iterable<Edge> edges() {
Queue<Edge> edges = new Queue<Edge>();
for (int i = 0; i < this.mstEdges.length; i++) {
Edge e = this.mstEdges[i];
int v = e.either();
edges.enqueue(new Edge(v, e.other(v), e.weight()));
}
return edges;
}
/**
* test the computing of an MST of a graph with weights 1 and 2 only
* the first argument is the name of the file that contains the graph (graph1.txt, graph2.txt, or graph3.txt)
* you can define this argument in Run.. --> (x)=Arguments
*/
public static void main(String[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
PrimMST primMST = new PrimMST(G);
MST_12 mst12 = null;
try {
mst12 = new MST_12(G,0);
}
catch (DisconnectedGraphException e) {
System.err.println("the input graph is not connected and hence has no (minimum) spanning tree");
}
catch (WrongWeightException e) {
System.err.println("not all weights in the input graph are 1 or 2");
}
System.out.println("Prim's MST weight = " + primMST.weight());
System.out.println("My MST's weight = " + mst12.weight());
}
}