// Collacoq link: https://x80.org/collacoq/qezicaroni.coq
Inductive bin : Type :=
| Zero : bin
| One : bin
| ZeroP : bin -> bin
| OneP : bin -> bin.
Inductive bin_carry : Type :=
| ZeroC : bin_carry
| OneC : bin_carry.
(*returns carry, new_state*)
Fixpoint incr' (x : bin) : bin_carry * bin :=
match x with
| Zero => (ZeroC, One)
| One => (OneC, Zero)
| ZeroP x =>
match incr' x with
| (OneC, x') => (ZeroC, OneP x')
| (ZeroC, x') => (ZeroC, ZeroP x')
end
| OneP x =>
match incr' x with
| (OneC, x') => (OneC, ZeroP x')
| (ZeroC, x') => (ZeroC, OneP x')
end
end.
Definition incr (x : bin): bin :=
match incr' x with
| (ZeroC,x) => x
| (OneC,x) => OneP x
end.
(*index_multiplier * result*)
Fixpoint bin_to_nat' (x : bin): nat * nat :=
match x with
| Zero => (2,0)
| One => (2,1)
| ZeroP x =>
match bin_to_nat' x with
| (multiplier,result) => (multiplier * 2,result)
end
| OneP x =>
match bin_to_nat' x with
| (multiplier,result) => (multiplier * 2,result + multiplier)
end
end.
Definition bin_to_nat (x : bin): nat :=
match bin_to_nat' x with
| (_,r) => r
end.
Example bin_test1: bin_to_nat Zero = 0.
Proof. reflexivity. Qed.
Example bin_test2: bin_to_nat (incr Zero) = 1.
Proof. reflexivity. Qed.
Example bin_test3: bin_to_nat (incr (incr Zero)) = 2.
Proof. reflexivity. Qed.
Example bin_test4: bin_to_nat (incr (incr (incr Zero))) = 3.
Proof. reflexivity. Qed.
Example bin_test5: bin_to_nat (incr (incr (incr (incr Zero)))) = 4.
Proof. reflexivity. Qed.
Theorem binary_commute :
forall (x: bin),
bin_to_nat(incr x) = S (bin_to_nat x).
Proof. induction x.
- reflexivity.
- reflexivity.
- replace (ZeroP x) with x.
+ rewrite -> IHx. reflexivity.
+ induction x.
* Abort.
我正在阅读软件基础书,并对上述内容感到困惑。我在网上环顾四周,找到了the solution用于不同种类的垃圾箱配方,但我认为这里没有适用的解决方案。
问题在于,第三个-
项目符号bin_to_nat (incr (ZeroP x)) = S (bin_to_nat (ZeroP x)
不会简化,也不能直接重写。所以在了解了替换之后,我认为这可能有用,但后来我试图证明Zero = ZeroP Zero
。
我知道这个问题表明我可以自由地改变bin的表达方式来证明它的交换性更容易,但我的预感是,如果我遇到上述定义,我不会对Coq有所了解。虽然与过去几次不同,但我认为我还没有工具可以解决这个问题。
我在这里缺少什么?
答案 0 :(得分:3)
<?php
$host="localhost";
$dbuser="root";
$pass="";
$dbname="online_exam";
$conn=mysqli_connect($host,$dbuser,$pass,$dbname);
// echo "$conn";
if(mysqli_connect_errno())
{die("connection Failed!".mysqli_connect_error());
}
?>
<html>
<body background="bg/hero8.jpg" text="white">
<table cellspacing="15px" border="0px" align="center">
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<tr></tr>
<form action="loginS.php" method="POST">
<tr>
<td>STUDENTS LOGIN</td></tr>
<tr>
<td>Enter the user name:<input type="text" name="uname"></td></tr>
<tr>
<td>Enter the Password:<input type="password" name="pwd"></td></tr>
<tr><td><input type="submit" name="submit" value="LOGIN"></td></tr>
</table>
</body>
</html>
<?php
if(isset($_POST['submit'])){
$uname = $_POST['uname'];
$pswd=$_POST['pwd'];
if(empty($uname) || empty($pswd))
{echo"OOPs! Your are suppose to not leave any of the constrains empty ";}
else{
$sql="SELECT * FROM student WHERE Email='{$uname}'AND Pass='{$pswd}';"; //Q_no, Ques, Op_1, Op_2, Op_3, Op_4, Ans
$res=mysqli_query($conn,$sql);
if(!$res){
//die("query failed".mysqli_error($conn));
echo "User name or password is wrong";
}
else{$flag=0;
while($row=mysqli_fetch_array($res)){
//$course = $row['Course']; //$question_array[$i]=$row['Ques'];
$name = $row['Name'];
$lastresult= $row['Lastresult'];
$USN=$row['USN'];
$flag=1;
}
if($flag==0)
{echo "Wrong Password or Username";
exit;}
session_start();
$_SESSION['myValue']=$lastresult;
$_SESSION['myValue1']=$name;
$_SESSION['myValue2']=$USN;
header("Location: Student_menu.php");
exit;
}
}
}
?>
无法成功:因为持有replace (ZeroP x) with x.
这样的等式需要是一个等于x
的无限项。您可能首先要证明的是ZeroP (ZeroP (ZeroP (...)))
是语义扩展 。即。
incr