LU分解是否有命令或子程序?

时间:2016-11-04 12:01:04

标签: fortran lapack

在MatLab中,命令lu(A)给出两个矩阵L和U的输出,即A的LU分解。我想知道Fortran中是否有一些命令完全相同。我无法在任何地方找到它。我找到了很多LAPACK子程序,通过首先执行LU分解来解决线性系统,但对于我的purpouses,我需要专门执行LU分解并存储L和U矩阵。

是否有一个命令或子程序,它具有方形矩阵A作为输入,并输出LU分解的矩阵L和U?

3 个答案:

答案 0 :(得分:4)

在Matlab中没有与lu对应的内置命令,但我们可以在LAPACK中向dgetrf编写一个简单的包装器,使得接口类似于lu,例如,

module linalg
    implicit none
    integer, parameter :: dp = kind(0.0d0)
contains
    subroutine lufact( A, L, U, P )
        !... P * A = L * U
        !... http://www.netlib.org/lapack/explore-3.1.1-html/dgetrf.f.html
        !... (note that the definition of P is opposite to that of the above page)

        real(dp), intent(in) :: A(:,:)
        real(dp), allocatable, dimension(:,:) :: L, U, P
        integer, allocatable  :: ipiv(:)
        real(dp), allocatable :: row(:)
        integer :: i, n, info

        n = size( A, 1 )
        allocate( L( n, n ), U( n, n ), P( n, n ), ipiv( n ), row( n ) )

        L = A
        call DGETRF( n, n, L, n, ipiv, info )
        if ( info /= 0 ) stop "lufact: info /= 0"

        U = 0.0d0
        P = 0.0d0
        do i = 1, n
            U( i, i:n ) = L( i, i:n )
            L( i, i:n ) = 0.0d0
            L( i, i )   = 1.0d0
            P( i, i )   = 1.0d0
        enddo

        !... Assuming that P = P[ipiv(n),n] * ... * P[ipiv(1),1]
        !... where P[i,j] is a permutation matrix for i- and j-th rows.
        do i = 1, n
            row = P( i, : )
            P( i, : ) = P( ipiv(i), : )
            P( ipiv(i), : ) = row
        enddo
    endsubroutine
end module

然后,我们可以使用Matlab页面中显示的3x3矩阵测试例程lu():

program test_lu
    use linalg
    implicit none
    real(dp), allocatable, dimension(:,:) :: A, L, U, P

    allocate( A( 3, 3 ) )

    A( 1, : ) = [ 1, 2, 3 ]
    A( 2, : ) = [ 4, 5, 6 ]
    A( 3, : ) = [ 7, 8, 0 ]

    call lufact( A, L, U, P )  !<--> [L,U,P] = lu( A ) in Matlab

    call show( "A =", A )
    call show( "L =", L )
    call show( "U =", U )
    call show( "P =", P )

    call show( "P * A =", matmul( P, A ) )
    call show( "L * U =", matmul( L, U ) )

    call show( "P' * L * U =", matmul( transpose(P), matmul( L, U ) ) )

contains
    subroutine show( msg, X )
        character(*) :: msg
        real(dp) :: X(:,:)
        integer i
        print "(/,a)", trim( msg )
        do i = 1, size(X,1)
            print "(*(f8.4))", X( i, : )
        enddo
    endsubroutine
end program

给出了预期的结果:

A =
  1.0000  2.0000  3.0000
  4.0000  5.0000  6.0000
  7.0000  8.0000  0.0000

L =
  1.0000  0.0000  0.0000
  0.1429  1.0000  0.0000
  0.5714  0.5000  1.0000

U =
  7.0000  8.0000  0.0000
  0.0000  0.8571  3.0000
  0.0000  0.0000  4.5000

P =
  0.0000  0.0000  1.0000
  1.0000  0.0000  0.0000
  0.0000  1.0000  0.0000

P * A =
  7.0000  8.0000  0.0000
  1.0000  2.0000  3.0000
  4.0000  5.0000  6.0000

L * U =
  7.0000  8.0000  0.0000
  1.0000  2.0000  3.0000
  4.0000  5.0000  6.0000

P' * L * U =
  1.0000  2.0000  3.0000
  4.0000  5.0000  6.0000
  7.0000  8.0000  0.0000

请注意,P的倒数由其转置(即inv(P) = P' = transpose(P))给出,因为P是(基本)置换矩阵的乘积。

答案 1 :(得分:2)

我添加了一个使用DOLITTLE方法计算LU的方法。 MATLAB使用它来计算LU,以便更快地计算涉及更大的矩阵。算法如下。要执行算法,您必须以下面给出的格式提供输入文件。由于算法是子程序,您可以将其添加到代码中并在需要时调用它。算法,输入文件,输出文件如下。

  PROGRAM DOLITTLE
  IMPLICIT NONE
  INTEGER :: n
  !**********************************************************
  ! READS THE NUMBER OF EQUATIONS TO BE SOLVED.
  OPEN(UNIT=1,FILE='input.dat',ACTION='READ',STATUS='OLD')
  READ(1,*) n
  CLOSE(1)
  !**********************************************************

  CALL LU(n)
  END PROGRAM


    !==========================================================
    ! SUBROUTINES TO MAIN PROGRAM
    SUBROUTINE LU(n)
    IMPLICIT NONE

    INTEGER :: i,j,k,p,n,z,ii,itr = 500000
    REAL(KIND=8) :: temporary,s1,s2
    REAL(KIND=8),DIMENSION(1:n) :: x,b,y
    REAL(KIND=8),DIMENSION(1:n,1:n) :: A,U,L,TEMP
    REAL(KIND=8),DIMENSION(1:n,1:n+1) :: AB

    ! READING THE SYSTEM OF EQUATIONS

    OPEN(UNIT=2,FILE='input.dat',ACTION='READ',STATUS='OLD')
    READ(2,*)
    DO I=1,N
         READ(2,*) A(I,:)
    END DO
    DO I=1,N
         READ(2,*) B(I)
    END DO
    CLOSE(2)

    DO z=1,itr
         U(:,:) = 0
         L(:,:) = 0
         DO j = 1,n
              L(j,j) = 1.0d0
         END DO
         DO j = 1,n
              U(1,j) = A(1,j)
         END DO

         DO i=2,n
             DO j=1,n
                  DO k=1,i1
                       s1=0
                       if (k==1)then
                        s1=0
                       else
                        DO p=1,k1
                         s1=s1+L(i,p)*U(p,k)
                        end DO
                       endif
                       L(i,k)=(A(i,k)-s1)/U(k,k)
                  END DO
                  DO k=i,n
                       s2=0
                       DO p=1,i-1
                       s2=s2+l(i,p)*u(p,k)
                       END DO
                       U(i,k)=A(i,k)*s2
                  END DO
             END DO
        END DO
        IF(z.eq.1)THEN
        OPEN(UNIT=3,FILE='output.dat',ACTION='write')
        WRITE(3,*) ''
        WRITE(3,*) '********** SOLUTIONS *********************'
        WRITE(3,*) ''
        WRITE(3,*) ''
        WRITE(3,*) 'UPPER TRIANGULAR MATRIX'
        DO I=1,N
             WRITE(3,*) U(I,:)
        END DO
        WRITE(3,*) ''
        WRITE(3,*) ''
        WRITE(3,*) 'LOWER TRIANGULAR MATRIX'
        DO I=1,N
             WRITE(3,*) L(I,:)
        END DO
   END SUBROUTINE

这是系统Ax = B的输入文件格式。第一行是方程的数量,接下来的三行是A矩阵元素,接​​下来的三行是B向量,

      3
      10 8 3
      3 20 1
      4 5 15
      18
      23
      9  

输出生成为,

      ********** SOLUTIONS *********************
      UPPER TRIANGULAR MATRIX
      10.000000000000000 8.0000000000000000 3.0000000000000000
      0.0000000000000000 17.600000000000001 0.1000000000000009
      0.0000000000000000 0.0000000000000000 13.789772727272727
      LOWER TRIANGULAR MATRIX
      1.0000000000000000 0.0000000000000000 0.0000000000000000
      0.2999999999999999 1.0000000000000000 0.0000000000000000
      0.4000000000000002 0.1022727272727273 1.0000000000000000   

答案 2 :(得分:0)

你可以试试“fortran 77中的数字食谱”, 有LU分解子程序。

有许多有用的子程序,linalg,stasistics等。