编写模仿LAPACK的dgetrf进行LU分解的可跟踪R函数

时间:2018-08-04 17:01:36

标签: r function matrix matrix-factorization

R核心中没有LU分解功能。尽管这种分解是solve的一个步骤,但并未明确使其可以用作独立功能。我们可以为此编写一个R函数吗?它需要模仿LAPACK例程dgetrfMatrix包中有一个lu function很好,但是如果我们编写一个可以做到的 trackable R函数会更好

  • 分解矩阵直到特定的列/行并返回中间结果;
  • 从中间结果继续分解到另一列/行或末尾。

此功能对于教育和调试目的都是有用的。教育的好处显而易见,因为我们可以逐列说明因式分解/高斯消去。供调试使用,这是两个示例。

Inconsistent results between LU decomposition in R and Python中,询问为什么R和Python中的LU分解会产生不同的结果。我们可以清楚地看到两个软件都返回相同的第一个枢轴和第二个枢轴,而不是第三个。因此,当分解进行到第3行/第3列时,一定会有一些有趣的事情。如果我们可以检索该临时结果进行调查,那就太好了。

Can I stably invert a Vandermonde matrix with many small values in R?中,LU分解对于这种类型的矩阵是不稳定的。在我的回答中,给出了一个3 x 3的矩阵作为示例。我希望solve会产生错误消息,抱怨U[3, 3] = 0,但是运行solve几次后,我发现solve有时会成功。因此,对于数值研究,我想知道当分解进行到第二列/第二行时会发生什么。

由于该函数将用纯R代码编写,因此对于中等到较大的矩阵,预期它会变慢。但是性能不是问题,因为对于教育和调试,我们只使用一个小的矩阵。


dgetrf的一些简介

LAPACK的dgetrf通过行透视:A = PLU计算LU分解。在因式分解退出时,

  • L是一个单位下三角矩阵,存储在A的下三角部分;
  • U是一个上三角矩阵,存储在A的上三角部分;
  • P是存储为单独的排列索引向量的行排列矩阵。

除非枢轴完全为零(不能达到一定的容差),否则应进行分解。


我从何开始

编写既不具有行透视功能又不具有“暂停/继续”选项的LU因式分解并非没有挑战:

LU <- function (A) {

  ## check dimension
  n <- dim(A)
  if (n[1] != n[2]) stop("'A' must be a square matrix")
  n <- n[1]

  ## Gaussian elimination
  for (j in 1:(n - 1)) {

    ind <- (j + 1):n

    ## check if the pivot is EXACTLY 0
    piv <- A[j, j]
    if (piv == 0) stop(sprintf("system is exactly singular: U[%d, %d] = 0", j, j))

    l <- A[ind, j] / piv

    ## update `L` factor
    A[ind, j] <- l

    ## update `U` factor by Gaussian elimination
    A[ind, ind] <- A[ind, ind] - tcrossprod(l, A[j, ind])

    }

  A
  }

当不需要旋转时,可以显示出正确的结果:

A <- structure(c(0.923065107548609, 0.922819485189393, 0.277002309216186, 
0.532856695353985, 0.481061384081841, 0.0952619954477996, 
0.261916425777599, 0.433514681644738, 0.677919807843864, 
0.771985625848174, 0.705952850636095, 0.873727774480358, 
0.28782021952793, 0.863347264472395, 0.627262107795104, 
0.187472499441355), .Dim = c(4L, 4L))

oo <- LU(A)
oo
#          [,1]       [,2]       [,3]       [,4]
#[1,] 0.9230651  0.4810614 0.67791981  0.2878202
#[2,] 0.9997339 -0.3856714 0.09424621  0.5756036
#[3,] 0.3000897 -0.3048058 0.53124291  0.7163376
#[4,] 0.5772688 -0.4040044 0.97970570 -0.4479307

L <- diag(4)
low <- lower.tri(L)
L[low] <- oo[low]
L
#          [,1]       [,2]      [,3] [,4]
#[1,] 1.0000000  0.0000000 0.0000000    0
#[2,] 0.9997339  1.0000000 0.0000000    0
#[3,] 0.3000897 -0.3048058 1.0000000    0
#[4,] 0.5772688 -0.4040044 0.9797057    1

U <- oo
U[low] <- 0
U
#          [,1]       [,2]       [,3]       [,4]
#[1,] 0.9230651  0.4810614 0.67791981  0.2878202
#[2,] 0.0000000 -0.3856714 0.09424621  0.5756036
#[3,] 0.0000000  0.0000000 0.53124291  0.7163376
#[4,] 0.0000000  0.0000000 0.00000000 -0.4479307

lu软件包中的Matrix进行比较:

library(Matrix)
rr <- expand(lu(A))
rr
#$L
#4 x 4 Matrix of class "dtrMatrix" (unitriangular)
#     [,1]       [,2]       [,3]       [,4]      
#[1,]  1.0000000          .          .          .
#[2,]  0.9997339  1.0000000          .          .
#[3,]  0.3000897 -0.3048058  1.0000000          .
#[4,]  0.5772688 -0.4040044  0.9797057  1.0000000
#
#$U
#4 x 4 Matrix of class "dtrMatrix"
#     [,1]        [,2]        [,3]        [,4]       
#[1,]  0.92306511  0.48106138  0.67791981  0.28782022
#[2,]           . -0.38567138  0.09424621  0.57560363
#[3,]           .           .  0.53124291  0.71633755
#[4,]           .           .           . -0.44793070
#
#$P
#4 x 4 sparse Matrix of class "pMatrix"
#            
#[1,] | . . .
#[2,] . | . .
#[3,] . . | .
#[4,] . . . |

现在考虑排列A

B <- A[c(4, 3, 1, 2), ]

LU(B)
#          [,1]         [,2]      [,3]       [,4]
#[1,] 0.5328567   0.43351468 0.8737278  0.1874725
#[2,] 0.5198439   0.03655646 0.2517508  0.5298057
#[3,] 1.7322952  -7.38348421 1.0231633  3.8748743
#[4,] 1.7318343 -17.93154011 3.6876940 -4.2504433

结果与LU(A)不同。但是,由于Matrix::lu执行行数据透视,因此lu(B)的结果仅与lu(A)的排列矩阵不同:

expand(lu(B))$P
#4 x 4 sparse Matrix of class "pMatrix"
#            
#[1,] . . . |
#[2,] . . | .
#[3,] | . . .
#[4,] . | . .

1 个答案:

答案 0 :(得分:5)

让我们一一添加这些功能。


行旋转

这不太困难。

假设An x n。初始化置换索引向量pivot <- 1:n。在第j列中,我们扫描A[j:n, j]以获取最大绝对值。假设它是A[m, j]。如果m > j,我们进行行交换A[m, ] <-> A[j, ]。同时,我们进行置换pivot[j] <-> pivot[m]。枢纽化之后,消除与不进行枢纽化的因式分解相同,因此我们可以重用函数LU的代码。

LUP <- function (A) {

  ## check dimension
  n <- dim(A)
  if (n[1] != n[2]) stop("'A' must be a square matrix")
  n <- n[1]

  ## LU factorization from the beginning to the end
  from <- 1
  to <- (n - 1)
  pivot <- 1:n

  ## Gaussian elimination
  for (j in from:to) {

    ## select pivot
    m <- which.max(abs(A[j:n, j]))

    ## A[j - 1 + m, j] is the pivot
    if (m > 1L) {
      ## row exchange
      tmp <- A[j, ]; A[j, ] <- A[j - 1 + m, ]; A[j - 1 + m, ] <- tmp
      tmp <- pivot[j]; pivot[j] <- pivot[j - 1 + m]; pivot[j - 1 + m] <- tmp
      }

    ind <- (j + 1):n

    ## check if the pivot is EXACTLY 0
    piv <- A[j, j]
    if (piv == 0) {
      stop(sprintf("system is exactly singular: U[%d, %d] = 0", j, j))
      }

    l <- A[ind, j] / piv

    ## update `L` factor
    A[ind, j] <- l

    ## update `U` factor by Gaussian elimination
    A[ind, ind] <- A[ind, ind] - tcrossprod(l, A[j, ind])

    }

  ## add `pivot` as an attribute and return `A`
  structure(A, pivot = pivot)

  }

问题B中的尝试矩阵LUP(B)LU(A)相同,只是具有附加的排列索引向量。

oo <- LUP(B)
#          [,1]       [,2]       [,3]       [,4]
#[1,] 0.9230651  0.4810614 0.67791981  0.2878202
#[2,] 0.9997339 -0.3856714 0.09424621  0.5756036
#[3,] 0.3000897 -0.3048058 0.53124291  0.7163376
#[4,] 0.5772688 -0.4040044 0.97970570 -0.4479307
#attr(,"pivot")
#[1] 3 4 2 1

这是一个实用函数,可提取LUP

exLUP <- function (LUPftr) {
  L <- diag(1, nrow(LUPftr), ncol(LUPftr))
  low <- lower.tri(L)
  L[low] <- LUPftr[low]
  U <- LUPftr[1:nrow(LUPftr), ]  ## use "[" to drop attributes
  U[low] <- 0
  list(L = L, U = U, P = attr(LUPftr, "pivot"))
  }

rr <- exLUP(oo)
#$L
#          [,1]       [,2]      [,3] [,4]
#[1,] 1.0000000  0.0000000 0.0000000    0
#[2,] 0.9997339  1.0000000 0.0000000    0
#[3,] 0.3000897 -0.3048058 1.0000000    0
#[4,] 0.5772688 -0.4040044 0.9797057    1
#
#$U
#          [,1]       [,2]       [,3]       [,4]
#[1,] 0.9230651  0.4810614 0.67791981  0.2878202
#[2,] 0.0000000 -0.3856714 0.09424621  0.5756036
#[3,] 0.0000000  0.0000000 0.53124291  0.7163376
#[4,] 0.0000000  0.0000000 0.00000000 -0.4479307
#
#$P
#[1] 3 4 2 1

请注意,返回的排列索引确实适用于PA = LU(可能是教科书中使用最多的):

all.equal( B[rr$P, ], with(rr, L %*% U) )
#[1] TRUE

要获取LAPACK返回的排列索引(即A = PLU中的一个),请执行order(rr$P)

all.equal( B, with(rr, (L %*% U)[order(P), ]) )
#[1] TRUE

“暂停/继续”选项

添加“暂停/继续”功能有些棘手,因为我们需要某种方式来记录不完全因式分解的停止位置,以便稍后再从中获取。

假设我们要将功能LUP增强到新的LUP2。考虑添加自变量to。用A[to, to]完成分解并停止使用A[to + 1, to + 1]后,分解将停止。我们可以将此to以及临时pivot向量存储为A的属性并返回。稍后,当我们将此临时结果传递回LUP2时,需要首先检查这些属性是否存在。如果是这样,它知道应该从哪里开始;否则就从头开始。

LUP2 <- function (A, to = NULL) {

  ## check dimension
  n <- dim(A)
  if (n[1] != n[2]) stop("'A' must be a square matrix")
  n <- n[1]

  ## ensure that "to" has a valid value
  ## if it is not provided, set it to (n - 1) so that we complete factorization of `A`
  ## if provided, it can not be larger than (n - 1); otherwise it is reset to (n - 1)
  if (is.null(to)) to <- n - 1L
  else if (to > n - 1L) {
    warning(sprintf("provided 'to' too big; reset to maximum possible value: %d", n - 1L))
    to <- n - 1L
    }

  ## is `A` an intermediate result of a previous, unfinished LU factorization?
  ## if YES, it should have a "to" attribute, telling where the previous factorization stopped
  ## if NO, a new factorization starting from `A[1, 1]` is performed
  from <- attr(A, "to")

  if (!is.null(from)) {

    ## so we continue factorization, but need to make sure there is work to do
    from <- from + 1L
    if (from >= n) {
      warning("LU factorization of is already completed; return input as it is")
      return(A)
      }
    if (from > to) {
      stop(sprintf("please provide a bigger 'to' between %d and %d", from, n - 1L))
      }
    ## extract "pivot"
    pivot <- attr(A, "pivot")
    } else {

    ## we start a new factorization
    from <- 1
    pivot <- 1:n    

    }

  ## LU factorization from `A[from, from]` to `A[to, to]`
  ## the following code reuses function `LUP`'s code
  for (j in from:to) {

    ## select pivot
    m <- which.max(abs(A[j:n, j]))

    ## A[j - 1 + m, j] is the pivot
    if (m > 1L) {
      ## row exchange
      tmp <- A[j, ]; A[j, ] <- A[j - 1 + m, ]; A[j - 1 + m, ] <- tmp
      tmp <- pivot[j]; pivot[j] <- pivot[j - 1 + m]; pivot[j - 1 + m] <- tmp
      }

    ind <- (j + 1):n

    ## check if the pivot is EXACTLY 0
    piv <- A[j, j]
    if (piv == 0) {
      stop(sprintf("system is exactly singular: U[%d, %d] = 0", j, j))
      }

    l <- A[ind, j] / piv

    ## update `L` factor
    A[ind, j] <- l

    ## update `U` factor by Gaussian elimination
    A[ind, ind] <- A[ind, ind] - tcrossprod(l, A[j, ind])

    }

  ## update attributes of `A` and return `A`
  structure(A, to = to, pivot = pivot)
  }

尝试在问题中使用矩阵B。假设我们要在处理2列/行后停止分解。

oo <- LUP2(B, 2)
#          [,1]       [,2]       [,3]      [,4]
#[1,] 0.9230651  0.4810614 0.67791981 0.2878202
#[2,] 0.9997339 -0.3856714 0.09424621 0.5756036
#[3,] 0.5772688 -0.4040044 0.52046170 0.2538693
#[4,] 0.3000897 -0.3048058 0.53124291 0.7163376
#attr(,"to")
#[1] 2
#attr(,"pivot")
#[1] 3 4 1 2

由于因子分解未完成,因此U因子不是上三角。这是一个提取它的辅助函数。

## usable for all functions: `LU`, `LUP` and `LUP2`
## for `LUP2` the attribute "to" is used;
## for other two we can simply zero the lower triangular of `A`
getU <- function (A) {
  attr(A, "pivot") <- NULL
  to <- attr(A, "to")
  if (is.null(to)) {
    A[lower.tri(A)] <- 0
    } else {
    n <- nrow(A)
    len <- (n - 1):(n - to)
    zero_ind <- sequence(len)
    offset <- seq.int(1L, by = n + 1L, length = to)
    zero_ind <- zero_ind + rep.int(offset, len)
    A[zero_ind] <- 0
    }
  A
  }

getU(oo)
#          [,1]       [,2]       [,3]      [,4]
#[1,] 0.9230651  0.4810614 0.67791981 0.2878202
#[2,] 0.0000000 -0.3856714 0.09424621 0.5756036
#[3,] 0.0000000  0.0000000 0.52046170 0.2538693
#[4,] 0.0000000  0.0000000 0.53124291 0.7163376
#attr(,"to")
#[1] 2

现在我们可以继续分解:

LUP2(oo, 1)
#Error in LUP2(oo, 1) : please provide a bigger 'to' between 3 and 3

糟糕,我们错误地将了不可行的值to = 1传递给LUP2,因为临时结果已经处理了2列/行,并且无法撤消。该函数告诉我们,我们只能向前移动to并将其设置为3到3之间的任何整数。如果传入的值大于3,则会生成警告,并且to会重置为可能的最大值。

oo <- LUP2(oo, 10)
#Warning message:
#In LUP2(oo, 10) :
#  provided 'to' too big; reset to maximum possible value: 3

我们有U因素

getU(oo)
#          [,1]       [,2]       [,3]       [,4]
#[1,] 0.9230651  0.4810614 0.67791981  0.2878202
#[2,] 0.0000000 -0.3856714 0.09424621  0.5756036
#[3,] 0.0000000  0.0000000 0.53124291  0.7163376
#[4,] 0.0000000  0.0000000 0.00000000 -0.4479307
#attr(,"to")
#[1] 3

oo现在是完整的分解结果。如果我们仍然要求LUP2进行更新怎么办?

## without providing "to", it defaults to factorize till the end
oo <- LUP2(oo)
#Warning message:
#In LUP2(oo) :
#  LU factorization is already completed; return input as it is

它告诉您无法进行任何操作并按原样返回输入。

最后,让我们尝试一个奇异的方阵。

## this 4 x 4 matrix has rank 1
S <- tcrossprod(1:4, 2:5)

LUP2(S)
#Error in LUP2(S) : system is exactly singular: U[2, 2] = 0

## traceback
LUP2(S, to = 1)
#     [,1] [,2] [,3] [,4]
#[1,] 8.00   12   16   20
#[2,] 0.50    0    0    0
#[3,] 0.75    0    0    0
#[4,] 0.25    0    0    0
#attr(,"to")
#[1] 1
#attr(,"pivot")
#[1] 4 2 3 1