我们有一个ELP 1.0百万像素双镜头Usb立体相机,我们正在尝试使用C ++中的OpenCV 3.1进行校准。但是,校准的结果完全无法使用,因为调用stereoRectify会使图像完全变为两次。这就是我们的工作:
在两个相机中找到校准(棋盘)图案,棋盘尺寸为5x7,无论拍摄的图像数量如何,结果几乎相同
findChessboardCorners(img[k], boardSize, corners, CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE)
cornerSubPix(img[k], corners, Size(11, 11), Size(-1, -1), TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01));
使用
正确检测所有棋盘drawChessboardCorners(img[k], boardSize, corners, bFound);
然后我们分别校准每个相机(但这个步骤似乎对立体声校准不重要),但我们可以用它来分别验证每个相机
calibrateCamera(objectPoints, imagePoints[k], Size(320, 240), cameraMatrix[k], distCoeffs[k], rvecs, tvecs, 0)
然后我们进行立体声校准
stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1], cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1],
Size(320, 240), R, T, E, F, CALIB_USE_INTRINSIC_GUESS);
计算整改变换
stereoRectify(cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1], Size(320, 240), R, T, R1, R2, P1, P2, Q,
CALIB_ZERO_DISPARITY, 1, Size(320, 240), &validRoI[0], &validRoI[1]);
为重映射初始化地图
Mat rmap[2][2];
initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, Size(FRAME_WIDTH, FRAME_HEIGHT), CV_16SC2, rmap[0][0], rmap[0][1]);
initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, Size(FRAME_WIDTH, FRAME_HEIGHT), CV_16SC2, rmap[1][0], rmap[1][1]);
...
remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
imshow("Canvas", rimg);
结果是完全扭曲的图像。正如我在开始时所说的,所有校准/棋盘图案都被正确检测到,如果我们不调用stereoRectify函数,未失真的图像(重新映射后)看起来很完美。如果我们调用stereoRectify函数就会出现问题。
我们错过了什么吗? 校准图像的数量似乎没有任何影响(有时拍摄2张图像比10幅图像提供更好的结果(但仍然无法使用))
这是校准模式的示例。我们采取了几种不同的方向:
如果我们调用stereoRectify(但大多数情况会变得更糟),这是错误的结果:
提前感谢任何可能出错的帮助。
答案 0 :(得分:6)
如果某人需要类似的帮助,只是为了得到帮助,这就是我为获得最佳可观效果而采取的措施:
在角落检测之前升级棋盘图像:
Mat resized;
resize(img[k], resized, Size(FRAME_WIDTH * 2, FRAME_HEIGHT * 2), 0.0, 0.0, INTER_LINEAR);
findChessboardCorners(resized, boardSize, corners, CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE
缩小检测到的角落:
for (int i = 0; i < corners.size(); ++i) {
corners[i].x /= 2.0;
corners[i].y /= 2.0;
}
分别校准每个相机:
double rms = calibrateCamera(objectPoints, imagePoints[k], Size(FRAME_WIDTH, FRAME_HEIGHT), cameraMatrix[k], distCoeffs[k], rvecs, tvecs,
CALIB_FIX_PRINCIPAL_POINT | CALIB_FIX_ASPECT_RATIO | CALIB_ZERO_TANGENT_DIST | CALIB_RATIONAL_MODEL | CALIB_FIX_K3 | CALIB_FIX_K4 | CALIB_FIX_K5);
校准立体相机:
stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1], cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1],
Size(FRAME_WIDTH, FRAME_HEIGHT), R, T, E, F,
CALIB_FIX_INTRINSIC | CALIB_SAME_FOCAL_LENGTH,
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 0));
计算校正(alpha = 0.0):
stereoRectify(cameraMatrix[0], distCoeffs[0], cameraMatrix[1], distCoeffs[1], Size(FRAME_WIDTH, FRAME_HEIGHT),
R, T, R1, R2, P1, P2, Q,
CALIB_ZERO_DISPARITY, 0.0, Size(FRAME_WIDTH, FRAME_HEIGHT), &validRoI[0], &validRoI[1]);
这些是校准结果矩阵
内在函数:
M1: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 2.6187262304487734e+02, 0., 1.5950000000000000e+02, 0.,
2.6187262304487734e+02, 1.1950000000000000e+02, 0., 0., 1. ]
D1: !!opencv-matrix
rows: 1
cols: 5
dt: d
data: [ -4.6768074176991381e-01, 2.0221327568191746e-01, 0., 0., 0. ]
M2: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 2.6400975025525213e+02, 0., 1.5950000000000000e+02, 0.,
2.6400975025525213e+02, 1.1950000000000000e+02, 0., 0., 1. ]
D2: !!opencv-matrix
rows: 1
cols: 5
dt: d
data: [ -4.5713211677198845e-01, 2.8855737500717565e-01, 0., 0., 0. ]
外部参数:
R: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 9.9963073433190641e-01, 4.6310793035473068e-04,
2.7169477545556639e-02, -6.9475632716349024e-04,
9.9996348636555088e-01, 8.5172324905818230e-03,
-2.7164541091274301e-02, -8.5329635354663789e-03,
9.9959455592785362e-01 ]
T: !!opencv-matrix
rows: 3
cols: 1
dt: d
data: [ -6.1830090720273198e+01, 1.6774590574449604e+00,
1.8118983433925613e+00 ]
我的另一个问题是对变量初始化是否有任何特殊要求,或者这是否足够?
Mat cameraMatrix[2] = { Mat::eye(3, 3, CV_64F), Mat::eye(3, 3, CV_64F) };
Mat distCoeffs[2], R, T, E, F, R1, R2, P1, P2, Q;
答案 1 :(得分:3)
嘿,您是否尝试在函数stereoRectify中更改参数alpha的值。我记得,一旦我也获得了这样的结果并将alpha值改为0,我的工作就完成了。 请告诉我您使用alpha = -1,alpha = 0.5和alpha = 0
获得的结果