让d1
和d2
为整数Z
的矩阵。如何计算Sage中的组ker d1 / im d2
?
到目前为止,我已经能够为内核和图像计算基础,如下所示:
M24 = MatrixSpace(IntegerRing(),2,4)
d1 = M24([-1,1, 1,-1, -1,1, 1,-1])
kerd1 = d1.right_kernel().basis()
M43 = MatrixSpace(IntegerRing(),4,3)
d2 = M43([1,1,-1, 1,-1,-1, 1,-1,1, 1,1,1])
imd2 = d2.column_space().basis()
给出输出:
kerd1 = [
(1, 0, 0, -1),
(0, 1, 0, 1),
(0, 0, 1, 1)
]
imd2 = [
(1, 1, 1, 1),
(0, 2, 0, -2),
(0, 0, 2, 2)
]
我试图计算这样的商:
Z4.<a,b,c,d> = AbelianGroup(4, [0,0,0,0])
G = Z4.subgroup([a/d, b*d, c*d])
H = Z4.subgroup([a*b*c*d, b^2/d^2, c^2*d^2])
G.quotient(H)
但我得到了NotImplementedError
。
答案 0 :(得分:0)
我找到了两种方法:
$new_array = array_merge($read,$write);
$new_array2 = $new_array;
array_filter($new_array,function($value){
global $new_array;
$new_array[$value] = (array_key_exists($value,$new_array))? "read/write" : "read";
});
var_dump(array_diff($new_array, array_merge($new_array2)));