我正在阅读Robert Sedgewick编写的书籍算法中的Ford-Fulkerson maxflow算法。这里作者提到如下
最短增强路径中所需的增强路径的数量 为流程实现Ford-Fulkerson maxflow算法 具有V顶点和E边缘的网络最多为EV / 2。
证明草图:每个增强路径都有一个临界边缘 - 边缘 从剩余网络中删除,因为它对应于 前缘被填充到容量或后缘 被清空了。每次边缘是一个临界边缘,长度 通过它增加路径必须增加2.自增加 路径长度最多为V,每个边缘最多可以开启V / 2增强 路径和增强路径的总数最多为EV / 2。
我对上述文字的疑问是
请尽可能使用简单示例解释上述内容。
答案 0 :(得分:1)
首先需要证明以前的陈述
每次边缘是临界边缘时,通过它的增强路径的长度必须增加2。
路径长度最多为V,因为通过顶点两次是没有意义的(在这样的路径上移除顶点x的两次出现之间的所有边缘,你仍然会有一个好的路径,容量至少是原始路径的容量。)
因此,如果路径长度最多为V,并且每次边缘严重时路径长度增加2,那么边缘最多可以是V / 2倍。