在处理中将点正交投影到线上?

时间:2016-03-26 16:49:41

标签: java math vector processing orthogonal

我的处理草图中有一个线段和一个圆圈。我想要圆的中心,点q,找到线段上最近的点p,圆圈将朝向它移动。 我不太确定如何编码(处理中),所以任何建议都会很棒!谢谢! 到目前为止,这是我的代码:

int xPos1 = 200;
int yPos1 = 200;
int xp1 = 50;
int yp1 = 50;
int xp2 = 350;
int yp2 = 50;

void setup() {
    size(400, 400); 
    strokeWeight(2);
    line(xp1, yp1, xp2, yp2);
    strokeWeight(1);
}

void draw() {
    drawCircle();
}

void drawCircle() {
    fill(50, 120, 120);
    //circle
    ellipse(xPos1, yPos1, 75, 75); 
    //circle center
    ellipse(xPos1, yPos1, 7, 7);  
    fill(255);
    text("Q", xPos1 + 15, yPos1 + 5);
    fill(50, 120, 120);
}

1 个答案:

答案 0 :(得分:2)

点到线上的投影如下:

以x = a + t * n和点p

形式的行开头

表示距离点p的线上最近点的向量组件是:

(a-p) - ((a-p)dot n)n

所以我们得到:p +(a - p) - ((a - p)dot n)n

经过一些简化后,我们有: a - ((a - p)dot n)n

注意((a - p)点n)n是向量分量,表示从最近点到开头的直线位置(即从最近点到p回到a)

让我们使用PVector来让生活更轻松。

PVector p = new PVector(200, 200);
PVector a = new PVector(50, 50);
PVector b = new PVector(350, 50);
PVector n = new PVector(350, 50); // |p2 - p1|

void setup() {
    size(400, 400); 
    strokeWeight(2);
    strokeWeight(1);

    // initialize our normalized (unit length) line direction
    n.sub(a);
    n.normalize();
}

void draw() {
    drawCircle();
}

PVector getNearestPointOnLine(PVector p, PVector a, PVector n){
    // the notation turns the computation inside out,
    // but this is equivalent to the above equation
    PVector q = PVector.mult(n, -PVector.sub(a, p).dot(n));
    q.add(a);
    return q;
}

void drawCircle() {
    // lets draw everything here where we can see it
    background(255, 255, 255);
    line(a.x, a.y, b.x, b.y);

    fill(50, 120, 120);
    //circle

    // NOTE: this may require hooking up a mouse move event handler
    p.x = mouseX;
    p.y = mouseY;
    PVector q = getNearestPointOnLine(p, a, n);

    ellipse(q.x, q.y, 75, 75); 
    //circle center
    ellipse(q.x, q.y, 7, 7);  
    fill(0); // make text visible on white background
    text("Q", q.x + 15, q.y + 5);
    //fill(50, 120, 120);
}

参考:https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Vector_formulation