我一直致力于代码迭代地对整数进行分区,并使用以前的结果对数字进行完全分区,并认为使用以前的分区可以提高速度。到目前为止,我的性能比递归分区整数慢22倍,并且由于内存快速耗尽而无法测试更大的数字。如果有人可以帮助优化代码,我将非常感谢您的帮助。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.stream.Collectors;
public class Summands {
private static HashMap<Integer, HashSet<List<Integer>>> results;
private static HashMap<Integer, HashSet<String>> recursiveResults;
private static void sort(int[] a) {
//Radix sort for int array
int i, m = a[0], exp = 1, n = a.length;
int[] b = new int[n];
for (i = 1; i < n; i++) {
if (a[i] > m) {
m = a[i];
}
}
while (m / exp > 0) {
int[] bucket = new int[n];
for (i = 0; i < n; i++)
bucket[(a[i] / exp) % n]++;
for (i = 1; i < n; i++)
bucket[i] += bucket[i - 1];
for (i = n - 1; i >= 0; i--)
b[--bucket[(a[i] / exp) % n]] = a[i];
for (i = 0; i < n; i++)
a[i] = b[i];
exp *= n;
}
}
private static void generateResults(int n) {
//iterative partitioning
results.put(n, new HashSet<>());
results.get(n).add(new ArrayList<>());
for (List<Integer> list : results.get(n)) {
list.add(n);
}
for (int i = 1; i <= Math.floorDiv(n, 2); i++) {
//get all 2 summands partitions
int a = n - i;
results.get(n).add(Arrays.asList(i, a));
}
if (n > 1) {
//Get the rest of the partitions
HashSet<List<Integer>> set = new HashSet<>(results.get(n));
for (List<Integer> equ : set) {
if (equ.size() > 1) {
if (equ.get(1) > 1) {
HashSet<List<Integer>> temp = results.get(equ.get(1));
for (List<Integer> k : temp) {
List<Integer> tempEquList = new ArrayList<>(k);
tempEquList.add(equ.get(0));
int[] tempEqu = tempEquList.stream().mapToInt(Integer::intValue).toArray();
sort(tempEqu);
results.get(n).add(Arrays.stream(tempEqu).boxed().collect(Collectors.toList()));
}
}
}
}
}
}
private static void recursivePartition(int n) {
//recursively partition
recursiveResults.put(n, new HashSet<>());
partition(n, n, "", n);
}
private static void partition(int n, int max, String prefix, int key) {
//recursive method for partitioning
if (n == 0) {
recursiveResults.get(key).add(prefix);
return;
}
for (int i = Math.min(max, n); i >= 1; i--) {
partition(n - i, i, prefix + " " + i, key);
}
}
public static void main(String[] args) {
//get number of partitions to get
int target = Integer.valueOf(args[0]);
//time the iterative version
long time1 = System.currentTimeMillis();
results = new HashMap<>(target);
//loop until done
for (int i = 1; i <= target; i++) {
System.out.println(i);
generateResults(i);
}
//time both methods
long time2 = System.currentTimeMillis();
recursiveResults = new HashMap<>(target);
for (int i = 1; i <= target; i++) {
//loop until done
System.out.println(i);
recursivePartition(i);
}
long time3 = System.currentTimeMillis();
System.out.println("Iterative time: " + String.valueOf(time2 - time1));
System.out.println("Recursive time: " + String.valueOf(time3 - time2));
/*for(Integer key : results.keySet()){
//for ensuring proper amount of partitions for lower numbers. Primarily for testing
System.out.println(key + ": " + results.get(key).size());
}*/
}
}
答案 0 :(得分:0)
您可以使用 mapToObj
和 reduce
方法生成一组指定数字的被加数组合,即整数分区。首先准备被加数的数组集合,然后将这些集合的对依次相乘,得到笛卡尔积。
int n = 7;
Set<int[]> partition = IntStream.range(0, n)
// prepare sets of arrays of summands
.mapToObj(i -> IntStream.rangeClosed(1, n - i)
.mapToObj(j -> new int[]{j})
// Stream<TreeSet<int[]>>
.collect(Collectors.toCollection(
// comparing the contents of two arrays
() -> new TreeSet<>(Arrays::compare))))
// intermediate output, sets of arrays of summands
.peek(set -> System.out.println(
set.stream().map(Arrays::toString).collect(Collectors.joining())))
// sequential summation of pairs of sets up to the given number
.reduce((set1, set2) -> set1.stream()
// combinations of inner arrays
.flatMap(arr1 -> {
// sum of the elements of the first array
int sum = Arrays.stream(arr1).sum();
// if the specified number is reached
if (sum == n) return Arrays.stream(new int[][]{arr1});
// otherwise continue appending summands
return set2.stream() // drop the combinations that are greater
.filter(arr2 -> Arrays.stream(arr2).sum() + sum <= n)
.map(arr2 -> Stream.of(arr1, arr2)
.flatMapToInt(Arrays::stream)
.sorted().toArray()); // the sorted array
}) // set of arrays of combinations
.collect(Collectors.toCollection( // two arrays that differ
// only in order are considered the same partition
() -> new TreeSet<>(Arrays::compare))))
// otherwise an empty set of arrays
.orElse(new TreeSet<>(Arrays::compare));
// final output, the integer partition of the specified number
partition.stream().map(Arrays::toString).forEach(System.out::println);
中间输出,加数数组集:
[1][2][3][4][5][6][7]
[1][2][3][4][5][6]
[1][2][3][4][5]
[1][2][3][4]
[1][2][3]
[1][2]
[1]
最终输出,指定数字的整数分区:
[1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 2]
[1, 1, 1, 1, 3]
[1, 1, 1, 2, 2]
[1, 1, 1, 4]
[1, 1, 2, 3]
[1, 1, 5]
[1, 2, 2, 2]
[1, 2, 4]
[1, 3, 3]
[1, 6]
[2, 2, 3]
[2, 5]
[3, 4]
[7]