我在三维空间中有一些点,我想通过它们拟合二次曲面。
我试过这段代码
import itertools
import numpy as np
import matplotlib.pyplot as plt
def main():
points = [ [ 175697888, -411724928, 0.429621160030365 ], [ 175697888, -411725144, 0.6078286170959473 ], [ 175698072, -411724640, 0.060898926109075546 ], [ 175698008, -411725360, 0.6184252500534058 ], [ 175698248, -411725720, 0.0771455243229866 ], [ 175698448, -411724456, -0.5925689935684204 ], [ 175698432, -411725936, -0.17584866285324097 ], [ 175698608, -411726152, -0.24736160039901733 ], [ 175698840, -411724360, -1.27967369556427 ], [ 175698800, -411726440, -0.21100902557373047 ], [ 175699016, -411726744, -0.12785470485687256 ], [ 175699280, -411724208, -2.472576856613159 ], [ 175699536, -411726688, -0.19858847558498383 ], [ 175699760, -411724104, -3.5765910148620605 ], [ 175699976, -411726504, -0.7432857155799866 ], [ 175700224, -411723960, -4.770215034484863 ], [ 175700368, -411726304, -1.2959377765655518 ], [ 175700688, -411723760, -6.518451690673828 ], [ 175700848, -411726080, -3.02254056930542 ], [ 175701160, -411723744, -7.941056251525879 ], [ 175701112, -411725896, -3.884831428527832 ], [ 175701448, -411723824, -8.661275863647461 ], [ 175701384, -411725720, -5.21607780456543 ], [ 175701704, -411725496, -6.181706428527832 ], [ 175701800, -411724096, -9.490276336669922 ], [ 175702072, -411724344, -10.066594123840332 ], [ 175702216, -411724560, -10.098011016845703 ], [ 175702256, -411724864, -9.619892120361328 ], [ 175702032, -411725160, -6.936516284942627 ] ]
n = len(points)
x, y, z = map(np.array, zip(*points))
plt.figure()
plt.subplot(1, 1, 1)
# Fit a 3rd order, 2d polynomial
m = polyfit2d(x,y,z, order=2)
# Evaluate it on a grid...
nx, ny = 100, 100
xx, yy = np.meshgrid(np.linspace(x.min(), x.max(), nx), np.linspace(y.min(), y.max(), ny))
zz = polyval2d(xx, yy, m)
plt.scatter(xx, yy, c=zz, marker=2)
plt.scatter(x, y, c=z)
plt.show()
def polyfit2d(x, y, z, order=2):
ncols = (order + 1)**2
G = np.zeros((x.size, ncols))
ij = itertools.product(range(order+1), range(order+1))
for k, (i,j) in enumerate(ij):
G[:,k] = x**i * y**j
m, _, _, _ = np.linalg.lstsq(G, z)
return m
def polyval2d(x, y, m):
order = int(np.sqrt(len(m))) - 1
ij = itertools.product(range(order+1), range(order+1))
z = np.zeros_like(x)
for a, (i,j) in zip(m, ij):
z += a * x**i * y**j
return z
main()
基于这个答案:Python 3D polynomial surface fit, order dependent
但它实际上给出了相反的结果:
查看与表面相比的点的颜色。知道我做错了什么吗?
编辑:更新代码以移除显示不是问题的imshow
。
答案 0 :(得分:4)
浮点精度似乎存在问题。我稍微使用了您的代码,并更改y
和x, y = x - x[0], y - y[0]
的范围,使最小二乘解决方案正常工作。做
import itertools
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# from matplotlib import cbook
from matplotlib import cm
from matplotlib.colors import LightSource
def poly_matrix(x, y, order=2):
""" generate Matrix use with lstsq """
ncols = (order + 1)**2
G = np.zeros((x.size, ncols))
ij = itertools.product(range(order+1), range(order+1))
for k, (i, j) in enumerate(ij):
G[:, k] = x**i * y**j
return G
points = np.array([[175697888, -411724928, 0.429621160030365],
[175697888, -411725144, 0.6078286170959473],
[175698072, -411724640, 0.060898926109075546],
[175698008, -411725360, 0.6184252500534058],
[175698248, -411725720, 0.0771455243229866],
[175698448, -411724456, -0.5925689935684204],
[175698432, -411725936, -0.17584866285324097],
[175698608, -411726152, -0.24736160039901733],
[175698840, -411724360, -1.27967369556427],
[175698800, -411726440, -0.21100902557373047],
[175699016, -411726744, -0.12785470485687256],
[175699280, -411724208, -2.472576856613159],
[175699536, -411726688, -0.19858847558498383],
[175699760, -411724104, -3.5765910148620605],
[175699976, -411726504, -0.7432857155799866],
[175700224, -411723960, -4.770215034484863],
[175700368, -411726304, -1.2959377765655518],
[175700688, -411723760, -6.518451690673828],
[175700848, -411726080, -3.02254056930542],
[175701160, -411723744, -7.941056251525879],
[175701112, -411725896, -3.884831428527832],
[175701448, -411723824, -8.661275863647461],
[175701384, -411725720, -5.21607780456543],
[175701704, -411725496, -6.181706428527832],
[175701800, -411724096, -9.490276336669922],
[175702072, -411724344, -10.066594123840332],
[175702216, -411724560, -10.098011016845703],
[175702256, -411724864, -9.619892120361328],
[175702032, -411725160, -6.936516284942627]])
ordr = 2 # order of polynomial
x, y, z = points.T
x, y = x - x[0], y - y[0] # this improves accuracy
# make Matrix:
G = poly_matrix(x, y, ordr)
# Solve for np.dot(G, m) = z:
m = np.linalg.lstsq(G, z)[0]
# Evaluate it on a grid...
nx, ny = 30, 30
xx, yy = np.meshgrid(np.linspace(x.min(), x.max(), nx),
np.linspace(y.min(), y.max(), ny))
GG = poly_matrix(xx.ravel(), yy.ravel(), ordr)
zz = np.reshape(np.dot(GG, m), xx.shape)
# Plotting (see http://matplotlib.org/examples/mplot3d/custom_shaded_3d_surface.html):
fg, ax = plt.subplots(subplot_kw=dict(projection='3d'))
ls = LightSource(270, 45)
rgb = ls.shade(zz, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(xx, yy, zz, rstride=1, cstride=1, facecolors=rgb,
linewidth=0, antialiased=False, shade=False)
ax.plot3D(x, y, z, "o")
fg.canvas.draw()
plt.show()
解决了准确性问题。你可以尝试:
rank
给出
要评估您的健康质量,请阅读np.linalg.lstsq()的文档。 residual
应该是结果向量的大小, $.getJSON('URL.php', function(data) {
$.each(data, function(key, val) {
***CODE***
});
});
$.getJSON('URL1.php', function(data) {
$.each(data, function(key, val) {
***CODE***
});
});
$.getJSON('URL2.php', function(data) {
$.each(data, function(key, val) {
***CODE***
});
});
除以数据点数得出平均误差(点与平面之间的距离)。
答案 1 :(得分:0)
右侧的表达式
G[:,k] = x**i * y**j
正在无声地溢出。 x
和y
numpy整数数组,因此结果x**i * y**j
也是一个整数数组。但是当i
和j
都是2时,某些产品会溢出,并回绕到负值。
更改代码以使x
和y
浮点。例如,
points = np.array([ [ 175697888, -411724928, 0.429621160030365 ], [ 175697888, -411725144, 0.6078286170959473 ], [ 175698072, -411724640, 0.060898926109075546 ], [ 175698008, -411725360, 0.6184252500534058 ], [ 175698248, -411725720, 0.0771455243229866 ], [ 175698448, -411724456, -0.5925689935684204 ], [ 175698432, -411725936, -0.17584866285324097 ], [ 175698608, -411726152, -0.24736160039901733 ], [ 175698840, -411724360, -1.27967369556427 ], [ 175698800, -411726440, -0.21100902557373047 ], [ 175699016, -411726744, -0.12785470485687256 ], [ 175699280, -411724208, -2.472576856613159 ], [ 175699536, -411726688, -0.19858847558498383 ], [ 175699760, -411724104, -3.5765910148620605 ], [ 175699976, -411726504, -0.7432857155799866 ], [ 175700224, -411723960, -4.770215034484863 ], [ 175700368, -411726304, -1.2959377765655518 ], [ 175700688, -411723760, -6.518451690673828 ], [ 175700848, -411726080, -3.02254056930542 ], [ 175701160, -411723744, -7.941056251525879 ], [ 175701112, -411725896, -3.884831428527832 ], [ 175701448, -411723824, -8.661275863647461 ], [ 175701384, -411725720, -5.21607780456543 ], [ 175701704, -411725496, -6.181706428527832 ], [ 175701800, -411724096, -9.490276336669922 ], [ 175702072, -411724344, -10.066594123840332 ], [ 175702216, -411724560, -10.098011016845703 ], [ 175702256, -411724864, -9.619892120361328 ], [ 175702032, -411725160, -6.936516284942627 ] ])
x, y, z = points.T