我一直在使用numpy(使用最小二乘法)在python中进行一些拟合。
我想知道是否有办法让它适应数据同时迫使它通过一些固定点?如果不是python中有另一个库(或者我可以链接到的另一种语言 - 例如c)?
注意我知道可以强行通过一个固定点,将其移动到原点,并将常数项强制为零,如此处所述,但更常见的是2个或更多固定点要点:
答案 0 :(得分:16)
使用固定点进行拟合的数学上正确的方法是使用Lagrange multipliers。基本上,您修改要最小化的目标函数,通常是残差的平方和,为每个固定点添加额外参数。我没有成功地将改进的目标函数提供给scipy的最小化器之一。但是对于多项式拟合,您可以用笔和纸来计算细节,并将您的问题转换为线性方程组的解:
def polyfit_with_fixed_points(n, x, y, xf, yf) :
mat = np.empty((n + 1 + len(xf),) * 2)
vec = np.empty((n + 1 + len(xf),))
x_n = x**np.arange(2 * n + 1)[:, None]
yx_n = np.sum(x_n[:n + 1] * y, axis=1)
x_n = np.sum(x_n, axis=1)
idx = np.arange(n + 1) + np.arange(n + 1)[:, None]
mat[:n + 1, :n + 1] = np.take(x_n, idx)
xf_n = xf**np.arange(n + 1)[:, None]
mat[:n + 1, n + 1:] = xf_n / 2
mat[n + 1:, :n + 1] = xf_n.T
mat[n + 1:, n + 1:] = 0
vec[:n + 1] = yx_n
vec[n + 1:] = yf
params = np.linalg.solve(mat, vec)
return params[:n + 1]
要测试它是否有效,请尝试以下操作:其中n
是点数,d
是多项式的度数,f
是固定点的数量:
n, d, f = 50, 8, 3
x = np.random.rand(n)
xf = np.random.rand(f)
poly = np.polynomial.Polynomial(np.random.rand(d + 1))
y = poly(x) + np.random.rand(n) - 0.5
yf = np.random.uniform(np.min(y), np.max(y), size=(f,))
params = polyfit_with_fixed_points(d, x , y, xf, yf)
poly = np.polynomial.Polynomial(params)
xx = np.linspace(0, 1, 1000)
plt.plot(x, y, 'bo')
plt.plot(xf, yf, 'ro')
plt.plot(xx, poly(xx), '-')
plt.show()
当然,拟合多项式恰好通过各点:
>>> yf
array([ 1.03101335, 2.94879161, 2.87288739])
>>> poly(xf)
array([ 1.03101335, 2.94879161, 2.87288739])
答案 1 :(得分:10)
如果您使用curve_fit()
,则可以使用sigma
参数为每个点赋予权重。下面的例子给出了第一个,中间的,最后一个非常小的西格玛点,因此拟合结果将非常接近这三个点:
N = 20
x = np.linspace(0, 2, N)
np.random.seed(1)
noise = np.random.randn(N)*0.2
sigma =np.ones(N)
sigma[[0, N//2, -1]] = 0.01
pr = (-2, 3, 0, 1)
y = 1+3.0*x**2-2*x**3+0.3*x**4 + noise
def f(x, *p):
return np.poly1d(p)(x)
p1, _ = optimize.curve_fit(f, x, y, (0, 0, 0, 0, 0), sigma=sigma)
p2, _ = optimize.curve_fit(f, x, y, (0, 0, 0, 0, 0))
x2 = np.linspace(0, 2, 100)
y2 = np.poly1d(p)(x2)
plot(x, y, "o")
plot(x2, f(x2, *p1), "r", label=u"fix three points")
plot(x2, f(x2, *p2), "b", label=u"no fix")
legend(loc="best")
答案 2 :(得分:5)
一种简单直接的方法是利用约束最小二乘法,其中约束用加号M加权,如:
from numpy import dot
from numpy.linalg import solve
from numpy.polynomial.polynomial import Polynomial as P, polyvander as V
def clsq(A, b, C, d, M= 1e5):
"""A simple constrained least squared solution of Ax= b, s.t. Cx= d,
based on the idea of weighting constraints with a largish number M."""
return solve(dot(A.T, A)+ M* dot(C.T, C), dot(A.T, b)+ M* dot(C.T, d))
def cpf(x, y, x_c, y_c, n, M= 1e5):
"""Constrained polynomial fit based on clsq solution."""
return P(clsq(V(x, n), y, V(x_c, n), y_c, M))
显然这不是一个真正的全包式的子弹解决方案,但显然它似乎与一个简单的例子(for M in [0, 4, 24, 124, 624, 3124]
)合作得很好:
In []: x= linspace(-6, 6, 23)
In []: y= sin(x)+ 4e-1* rand(len(x))- 2e-1
In []: x_f, y_f= linspace(-(3./ 2)* pi, (3./ 2)* pi, 4), array([1, -1, 1, -1])
In []: n, x_s= 5, linspace(-6, 6, 123)
In []: plot(x, y, 'bo', x_f, y_f, 'bs', x_s, sin(x_s), 'b--')
Out[]: <snip>
In []: for M in 5** (arange(6))- 1:
....: plot(x_s, cpf(x, y, x_f, y_f, n, M)(x_s))
....:
Out[]: <snip>
In []: ylim([-1.5, 1.5])
Out[]: <snip>
In []: show()
并产生如下输出:
修改:添加了'确切'解决方案:
from numpy import dot
from numpy.linalg import solve
from numpy.polynomial.polynomial import Polynomial as P, polyvander as V
from scipy.linalg import qr
def solve_ns(A, b): return solve(dot(A.T, A), dot(A.T, b))
def clsq(A, b, C, d):
"""An 'exact' constrained least squared solution of Ax= b, s.t. Cx= d"""
p= C.shape[0]
Q, R= qr(C.T)
xr, AQ= solve(R[:p].T, d), dot(A, Q)
xaq= solve_ns(AQ[:, p:], b- dot(AQ[:, :p], xr))
return dot(Q[:, :p], xr)+ dot(Q[:, p:], xaq)
def cpf(x, y, x_c, y_c, n):
"""Constrained polynomial fit based on clsq solution."""
return P(clsq(V(x, n), y, V(x_c, n), y_c))
并测试合适度:
In []: x= linspace(-6, 6, 23)
In []: y= sin(x)+ 4e-1* rand(len(x))- 2e-1
In []: x_f, y_f= linspace(-(3./ 2)* pi, (3./ 2)* pi, 4), array([1, -1, 1, -1])
In []: n, x_s= 5, linspace(-6, 6, 123)
In []: p= cpf(x, y, x_f, y_f, n)
In []: p(x_f)
Out[]: array([ 1., -1., 1., -1.])