我想使用python找到圆柱面上最合适的axis
点。
似乎scipy.linalg.svd
是要查找的功能。
因此,为了测试,我决定从这个线程How to generate regular points on cylindrical surface生成一些点{function makeCylinder
,并估计轴。
这是代码:
def rotMatrixAxisAngle(axis, theta, theta2deg=False):
# Load
from math import radians, cos, sin
from numpy import array
# Convert to radians
if theta2deg:
theta = radians(theta)
#
a = cos(theta/2.0)
b, c, d = -array(axis)*sin(theta/2.0)
# Rotation matrix
R = array([ [a*a+b*b-c*c-d*d, 2.0*(b*c-a*d), 2.0*(b*d+a*c)],
[2.0*(b*c+a*d), a*a+c*c-b*b-d*d, 2.0*(c*d-a*b)],
[2.0*(b*d-a*c), 2.0*(c*d+a*b), a*a+d*d-b*b-c*c] ])
return R
def makeCylinder(radius, length, nlength, alpha, nalpha, center, orientation):
# Load
from numpy import array, allclose, linspace, tile, vstack
from numpy import pi, cos, sin, arccos, cross
from numpy.linalg import norm
# Create the length array
I = linspace(0, length, nlength)
# Create alpha array avoid duplication of endpoints
if int(alpha) == 360:
A = linspace(0, alpha, num=nalpha, endpoint=False)/180.0*pi
else:
A = linspace(0, alpha, num=nalpha)/180.0*pi
# Calculate X and Y
X = radius * cos(A)
Y = radius * sin(A)
# Tile/repeat indices so all unique pairs are present
pz = tile(I, nalpha)
px = X.repeat(nlength)
py = Y.repeat(nlength)
# Points
points = vstack(( pz, px, py )).T
## Shift to center
points += array(center) - points.mean(axis=0)
# Orient tube to new vector
ovec = orientation / norm(orientation)
cylvec = array([1,0,0])
if allclose(cylvec, ovec):
return points
# Get orthogonal axis and rotation
oaxis = cross(ovec, cylvec)
rot = arccos(ovec.dot(cylvec))
R = rotMatrixAxisAngle(oaxis, rot)
return points.dot(R)
from numpy.linalg import norm
from numpy.random import rand
from scipy.linalg import svd
for i in xrange(100):
orientation = rand(3)
orientation[0] = 0
orientation /= norm(orientation)
# Generate sample points
points = makeCylinder(radius = 3.0,
length = 20.0, nlength = 20,
alpha = 360, nalpha = 30,
center = [0,0,0],
orientation = orientation)
# Least Square
uu, dd, vv = svd(points - points.mean(axis=0))
asse = vv[0]
assert abs( abs(orientation.dot(asse)) - 1) <= 1e-4, orientation.dot(asse)
如您所见,我生成了多个圆柱,其轴是随机的(rand(3)
)。
有趣的是,如果svd
的第一个成分为零(orientation
),orientation[0] = 0
会返回绝对完美的轴。
如果我对此行进行评论,估计的轴就会偏离。
更新1 : 即使在柱面方程上使用leastsq也会返回相同的行为:
def bestLSQ1(points):
from numpy import array, sqrt
from scipy.optimize import leastsq
# Expand
points = array(points)
x = points[:,0]
y = points[:,1]
z = points[:,2]
# Calculate the distance of each points from the center (xc, yc, zc)
# http://geometry.puzzles.narkive.com/2HaVJ3XF/geometry-equation-of-an-arbitrary-orientated-cylinder
def calc_R(xc, yc, zc, u1, u2, u3):
return sqrt( (x-xc)**2 + (y-yc)**2 + (z-zc)**2 - ( (x-xc)*u1 + (y-yc)*u2 + (z-zc)*u3 )**2 )
# Calculate the algebraic distance between the data points and the mean circle centered at c=(xc, yc, zc)
def dist(c):
Ri = calc_R(*c)
return Ri - Ri.mean()
# Axes - Minimize residu
xM, yM, zM = points.mean(axis=0)
# Calculate the center
center, ier = leastsq(dist, (xM, yM, zM, 0, 0, 1))
xc, yc, zc, u1, u2, u3 = center
asse = u1, u2, u3
return asse
答案 0 :(得分:1)
尽管您使用svd
采用了有趣的方法,但您也可以使用scipy.optimize.leastsq
进行更直观的处理。
这需要一个函数来计算轴和点云之间的距离,以便找到最合适的轴。
代码可能如下所示(distance_axis_points
改编自alg3dpy):
from numpy.linalg import norm
from numpy.random import rand
from scipy.optimize import leastsq
for i in range(100):
orientation = rand(3)
orientation[0] = 0
orientation /= norm(orientation)
# Generate sample points
points = makeCylinder(radius = 3.0,
length = 20.0, nlength = 20,
alpha = 360, nalpha = 30,
center = [0,0,0],
orientation = orientation)
def dist_axis_points(axis, points):
axis_pt0 = points.mean(axis=0)
axis = np.asarray(axis)
x1 = axis_pt0[0]
y1 = axis_pt0[1]
z1 = axis_pt0[2]
x2 = axis[0]
y2 = axis[1]
z2 = axis[2]
x3 = points[:, 0]
y3 = points[:, 1]
z3 = points[:, 2]
den = ((x1 - x2)**2 + (y1 - y2)**2 + (z1 - z2)**2)
t = ((x1**2 + x2 * x3 - x1 * x3 - x1 * x2 +
y1**2 + y2 * y3 - y1 * y3 - y1 * y2 +
z1**2 + z2 * z3 - z1 * z3 - z1 * z2)/den)
projected_pt = t[:, None]*(axis[None, :] - axis_pt0[None, :]) + axis_pt0[None, :]
return np.sqrt(((points - projected_pt)**2).sum(axis=-1))
popt, pconv = leastsq(dist_axis_points, x0=[1, 1, 1], args=(points,))
popt /= norm(popt)
assert abs(abs(orientation.dot(popt)) - 1) <= 1e-4, orientation.dot(popt)