预测rpart决策树模型中的确切概率

时间:2015-11-09 06:55:28

标签: r

而不是0或1,如何在rpart决策树模型中计算精确概率,如96%或43%。 我试过了 预测(模型,数据,类型=“概率”) 但它预测0或1

2 个答案:

答案 0 :(得分:5)

在创建rpart对象期间,您必须在参数中指定method = "class"以确保分类。一旦你这样做,你的预测方法会给出type="prob"的概率。

答案 1 :(得分:1)

@Nazia Afreen - 下面是R scriptlet,希望这可能有所帮助。

library(rpart)
model <- rpart(dependent_class_variable ~ independent var1 + var 2 + .., data = "your train data", method = "class")

## to get the probabilities of each record
probilities_ <- predict(model, "your test data without quotes", type = "prob")

## it will yield two probabilities, probability of getting class 1, and 
## probability of getting class 2, if you have two class. Sum of both = 1##