有条件的微不足道的析构函数

时间:2015-06-17 05:09:11

标签: c++ c++11 destructor c++14 variant

创建一个有区别的联合 / 标记的变体我得出结论,在这样的特性中特别需要"在编译时使某些条件下的析构函数变得微不足道&#34 34 ;.我的意思是某种SFINAE或类似的东西(伪代码):

template< typename ...types >
struct X
{
    ~X() = default((std::is_trivially_destructible< types >{} && ...))
    {
        // non-trivial code here
    }
};

这意味着如果default(*)中的条件为true,则析构函数的定义等于~X() = default;,但如果它是false{ // ... }正文反而用了。

#pragma once
#include <type_traits>
#include <utility>
#include <experimental/optional>

#include <cassert>

template< typename ...types >
class U;

template<>
class U<>
{

    U() = delete;

    U(U &) = delete;
    U(U const &) = delete;
    U(U &&) = delete;
    U(U const &&) = delete;

    void operator = (U &) = delete;
    void operator = (U const &) = delete;
    void operator = (U &&) = delete;
    void operator = (U const &&) = delete;

};

template< typename first, typename ...rest >
class U< first, rest... >
{

    struct head
    {

        std::size_t which_;
        first value_;

        template< typename ...types >
        constexpr
        head(std::experimental::in_place_t, types &&... _values)
            : which_{sizeof...(rest)}
            , value_(std::forward< types >(_values)...)
        { ; }

        template< typename type >
        constexpr
        head(type && _value)
            : head(std::experimental::in_place, std::forward< type >(_value))
        { ; }

    };

    using tail = U< rest... >;

    union
    {

        head head_;
        tail tail_;

    };

    template< typename ...types >
    constexpr
    U(std::true_type, types &&... _values)
        : head_(std::forward< types >(_values)...)
    { ; }

    template< typename ...types >
    constexpr
    U(std::false_type, types &&... _values)
        : tail_(std::forward< types >(_values)...)
    { ; }

public :

    using this_type = first; // place for recursive_wrapper filtering

    constexpr
    std::size_t
    which() const
    {
        return head_.which_;
    }

    constexpr
    U()
        : U(typename std::is_default_constructible< this_type >::type{}, std::experimental::in_place)
    { ; }

    U(U &) = delete;
    U(U const &) = delete;
    U(U &&) = delete;
    U(U const &&) = delete;

    template< typename type >
    constexpr
    U(type && _value)
        : U(typename std::is_same< this_type, std::decay_t< type > >::type{}, std::forward< type >(_value))
    { ; }

    template< typename ...types >
    constexpr
    U(std::experimental::in_place_t, types &&... _values)
        : U(typename std::is_constructible< this_type, types... >::type{}, std::experimental::in_place, std::forward< types >(_values)...)
    { ; }

    void operator = (U &) = delete;
    void operator = (U const &) = delete;
    void operator = (U &&) = delete;
    void operator = (U const &&) = delete;

    template< typename type >
    constexpr
    void
    operator = (type && _value) &
    {
        operator std::decay_t< type > & () = std::forward< type >(_value);
    }

    constexpr
    explicit
    operator this_type & () &
    {
        assert(sizeof...(rest) == which());
        return head_.value_;
    }

    constexpr
    explicit
    operator this_type const & () const &
    {
        assert(sizeof...(rest) == which());
        return head_.value_;
    }

    constexpr
    explicit
    operator this_type && () &&
    {
        assert(sizeof...(rest) == which());
        return std::move(head_.value_);
    }

    constexpr
    explicit
    operator this_type const && () const &&
    {
        assert(sizeof...(rest) == which());
        return std::move(head_.value_);
    }

    template< typename type >
    constexpr
    explicit
    operator type & () &
    {
        return static_cast< type & >(tail_);
    }

    template< typename type >
    constexpr
    explicit
    operator type const & () const &
    {
        return static_cast< type const & >(tail_);
    }

    template< typename type >
    constexpr
    explicit
    operator type && () &&
    { 
        //return static_cast< type && >(std::move(tail_)); // There is known clang++ bug #19917 for static_cast to rvalue reference.
        return static_cast< type && >(static_cast< type & >(tail_)); // workaround
    }

    template< typename type >
    constexpr
    explicit
    operator type const && () const &&
    {
        //return static_cast< type const && >(std::move(tail_));
        return static_cast< type const && >(static_cast< type const & >(tail_));
    }

    ~U()
    {
        if (which() == sizeof...(rest)) {
            head_.~head();
        } else {
            tail_.~tail();
        }
    }

};

// main.cpp
#include <cstdlib>

int
main()
{
    U< int, double > u{1.0};
    assert(static_cast< double >(u) == 1.0);
    u = 0.0;
    assert(static_cast< double >(u) == 0.0);
    U< int, double > w{1};
    assert(static_cast< int >(w) == 1);
    return EXIT_SUCCESS;
}

在此示例中,为了使类U成为文字类型(在first, rest...的情况下都是可以轻易破坏的),可以定义与U类几乎相同({ {1}}),但没有析构函数V的定义(即如果所有降序类型都是文字,则为文字类型)。然后定义模板类型别名

~U

并重新定义template< typename ...types > using W = std::conditional_t< (std::is_trivially_destructible< types >{} && ...), V< types... >, U< types... > >; using tail = W< rest... >;中的U。因此,有两个几乎相同的类,仅在析构函数存在时不同。上述方法需要过多的代码重复。

该问题还涉及简单地复制/移动可分配类型和V以及类型为operator =的所有其他条件。 5个条件总共提供了2 ^ 5个组合来实现

现在 C ++ 中是否有任何现成的技术(并且更简洁,然后在上面描述),我想念,或者很快就会提出建议

另一个可以想到的方法是(语言特性)将析构函数标记为std::is_trivially_copyable并授予编译器在实例化期间测试主体是否等同于普通的主体。

更新

在评论中指出简化了代码:constexpr变为union - 就像上课一样。删除了union说明符。

1 个答案:

答案 0 :(得分:1)

条件析构函数可以通过带有模板特化的附加中间层实现。例如:

Live Demo on Coliru

#include <type_traits>
#include <iostream>
#include <vector>

using namespace std;

template<typename T>
class storage
{
    aligned_storage_t<sizeof(T)> buf;

    storage(storage&&) = delete;
public:
    storage()
    {
        new (&buf) T{};
    }
    T &operator*()
    {
        return *static_cast<T*>(&buf);
    }
    void destroy()
    {
        (**this).~T();
    }
};

template<typename T, bool destructor>
struct conditional_storage_destructor 
{
    storage<T> x;
};

template<typename T>
struct conditional_storage_destructor<T, true> : protected storage<T>
{
    storage<T> x;

    ~conditional_storage_destructor()
    {
        x.destroy();
    }
};

template<typename T>
class wrapper
{
    conditional_storage_destructor<T, not is_trivially_destructible<T>::value> x;
public:
    T &operator*()
    {
        return *(x.x);
    }
};

int main()
{
    static_assert(is_trivially_destructible< wrapper<int> >::value);
    static_assert(not is_trivially_destructible< wrapper<vector<int>> >::value);

    cout << "executed" << endl;
}