OpenCV - 在频域上创建高斯滤波器

时间:2015-06-03 10:54:48

标签: c++ opencv filter gaussian

我已经做了我所做的任何事情,我只是想从DFT代码创建一个高斯滤波器,我已经完成了。这是代码:

//#include <stdafx.h>

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <stdio.h>
#include <iostream>

using namespace cv;
using namespace std;

double pixelDistance(double u, double v)
{
    return cv::sqrt(u*u + v*v);
}

double gaussianCoeff(double u, double v, double d0)
{
    double d = pixelDistance(u, v);
    return cv::exp((-d*d) / (2 * d0*d0));
}

cv::Mat createGaussianHighPassFilter(cv::Size size, double cutoffInPixels)
{
    Mat ghpf(size, CV_64F);

    cv::Point center(size.width / 2, size.height / 2);

    for (int u = 0; u < ghpf.rows; u++)
    {
        for (int v = 0; v < ghpf.cols; v++)
        {
            ghpf.at<double>(u, v) = gaussianCoeff(u - center.y, v - center.x, cutoffInPixels);
        }
    }

    return ghpf;
}


void translateImg(Mat& imgIn, Mat& imgOut)
{
    int i, j;

    for (i = 0; i < imgIn.rows; i++)
        for (j = 0; j < imgIn.cols; j++)
            imgOut.at<double>(i, j) = imgIn.at<double>(i, j) * pow(-1.0, i + j);
}
void scaleImg(Mat& imgIn, Mat& imgOut, float scaleFactor)
{
    int i, j;

    for (i = 0; i < imgIn.rows; i++)
        for (j = 0; j < imgIn.cols; j++)
            imgOut.at<double>(i, j) = (double)scaleFactor * log(1.0 + imgIn.at<double>(i, j));
}

void consoleOut(cv::Mat outMat, int rows = 5, int cols = 5)
{
    rows = ((rows == -1 || rows >= outMat.rows) ? outMat.rows : rows);
    cols = ((cols == -1 || cols >= outMat.cols) ? outMat.cols : cols);

    for (int i = 0; i < rows; i++)
    {
        for (int j = 0; j < cols; j++)
        {
            cout << outMat.at<double>(i, j);
            cout << " ";
        }
        cout << endl;
    }
}

double calcMSE(Mat& imgOrig, Mat& imgReconst)
{
    int valOrig = 0, valReconst = 0;
    double MSE = 0.0;

    for (int i = 0; i < imgOrig.rows; i++)
    {
        for (int j = 0; j < imgOrig.cols; j++)
        {
            valOrig = imgOrig.at<unsigned char>(i, j);
            valReconst = imgReconst.at<unsigned char>(i, j);

            MSE += pow((double)(valOrig - valReconst), 2.0);
        }
    }
    return (MSE / (imgOrig.rows * imgOrig.cols));
}

string convertInt(int number) // converts integer to string
{
    stringstream ss;
    ss << number;
    return ss.str();
}

int main(unsigned int argc, char* const argv[])
{
    int dftH, dftW;
    cv::Mat imgIn;

    imgIn = cv::imread("fri.pgm", 0); //grayscale
    imshow("Original Image", imgIn);
    waitKey();

    dftH = cv::getOptimalDFTSize(imgIn.rows);
    dftW = cv::getOptimalDFTSize(imgIn.cols);

    Mat imgMod;
    Mat imgPrecFFT(dftH, dftW, CV_64FC1, Scalar::all(0));
    imgIn.convertTo(imgMod, CV_64FC1);
    imgPrecFFT = imgMod(cv::Range::all(), cv::Range::all()).clone();

    // translate image
    std::vector<Mat> imgsTrans;
    imgsTrans.push_back(Mat_<double>(imgIn.size(), CV_64FC1));
    imgsTrans.push_back(Mat_<double>(imgIn.size(), CV_64FC1));
    imgsTrans[1].setTo(Scalar::all(0), Mat());
    translateImg(imgPrecFFT, imgsTrans[0]);

    Mat imgPrecTransFFT(imgIn.size(), CV_64FC2, Scalar::all(0));
    cv::merge(imgsTrans, imgPrecTransFFT);

    // dft
    cv::Mat imgFFT;
    dft(imgPrecTransFFT, imgFFT, DFT_COMPLEX_OUTPUT);
    cv::Mat imgDispFFT;

    // gaussian filter
    Mat ghpf = createGaussianHighPassFilter(Size(128, 128), 16.0);
    imshow("Gaussian Filter", ghpf);
    mulSpectrums(imgFFT, ghpf, imgFFT, 0, 0);
    waitKey();

    // calculate magnitude
    Mat imgMagnitude(imgIn.size(), CV_64FC1);
    std::vector<Mat> chans;
    cv::split(imgFFT, chans);
    cv::magnitude(chans[0], chans[1], imgMagnitude);

    // scale magnitude image
    Mat imgMagnitudeScaled(imgIn.size(), CV_64FC1);
    scaleImg(imgMagnitude, imgMagnitudeScaled, 10.0);

    // display magnitude image
    cv::Mat imgDisp;
    cv::convertScaleAbs(imgMagnitudeScaled, imgDisp);
    imshow("Magnitude Output", imgDisp);
    waitKey();

    // inverse dft
    cv::split(imgFFT, chans);
    chans[1].zeros(imgIn.size(), CV_64FC1);
    cv::merge(chans, imgFFT);
    cv::Mat invFFT;
    cv::idft(imgFFT, invFFT, DFT_REAL_OUTPUT + DFT_SCALE);

    // translate image back to original location
    cv::split(invFFT, imgsTrans);
    Mat imgAfterTrans(imgIn.size(), CV_64FC1);
    translateImg(imgsTrans[0], imgAfterTrans);
    imgAfterTrans.convertTo(imgDisp, CV_8UC1);

    imshow("After Inverse Output", imgDisp);
    waitKey();

    // calculate and output mean-squared error between input/output images
    double MSE = calcMSE(imgIn, imgDisp);
    cout << endl << "MSE: " << MSE << endl;
    waitKey();

    return 0;
}

我尝试过mulspectrum但它说错了,那我怎样才能将高斯滤波器与DFT滤波器合并?

0 个答案:

没有答案