我正在使用下面的算法来生成四边形,然后渲染这些四边形以形成像这样的轮廓
在图像上看到的问题是,有时线条太薄,因为它们应始终具有相同的宽度。我的算法找到第一个的4
个顶点,然后下一个的顶部2
个顶点是前一个的2
。这会创建连接线,但似乎并不总是有效。我怎么能解决这个问题?
这是我的算法:
void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input,
std::vector<GLfloat> &output, int width)
{
output.clear();
if(input.size() < 2)
{
return;
}
int temp;
float dirlen;
float perplen;
POINTFLOAT start;
POINTFLOAT end;
POINTFLOAT dir;
POINTFLOAT ndir;
POINTFLOAT perp;
POINTFLOAT nperp;
POINTFLOAT perpoffset;
POINTFLOAT diroffset;
POINTFLOAT p0, p1, p2, p3;
for(unsigned int i = 0; i < input.size() - 1; ++i)
{
start.x = static_cast<float>(input[i][0]);
start.y = static_cast<float>(input[i][1]);
end.x = static_cast<float>(input[i + 1][0]);
end.y = static_cast<float>(input[i + 1][1]);
dir.x = end.x - start.x;
dir.y = end.y - start.y;
dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y));
ndir.x = static_cast<float>(dir.x * 1.0 / dirlen);
ndir.y = static_cast<float>(dir.y * 1.0 / dirlen);
perp.x = dir.y;
perp.y = -dir.x;
perplen = sqrt((perp.x * perp.x) + (perp.y * perp.y));
nperp.x = static_cast<float>(perp.x * 1.0 / perplen);
nperp.y = static_cast<float>(perp.y * 1.0 / perplen);
perpoffset.x = static_cast<float>(nperp.x * width * 0.5);
perpoffset.y = static_cast<float>(nperp.y * width * 0.5);
diroffset.x = static_cast<float>(ndir.x * 0 * 0.5);
diroffset.y = static_cast<float>(ndir.y * 0 * 0.5);
// p0 = start + perpoffset - diroffset
// p1 = start - perpoffset - diroffset
// p2 = end + perpoffset + diroffset
// p3 = end - perpoffset + diroffset
p0.x = start.x + perpoffset.x - diroffset.x;
p0.y = start.y + perpoffset.y - diroffset.y;
p1.x = start.x - perpoffset.x - diroffset.x;
p1.y = start.y - perpoffset.y - diroffset.y;
if(i > 0)
{
temp = (8 * (i - 1));
p2.x = output[temp + 2];
p2.y = output[temp + 3];
p3.x = output[temp + 4];
p3.y = output[temp + 5];
}
else
{
p2.x = end.x + perpoffset.x + diroffset.x;
p2.y = end.y + perpoffset.y + diroffset.y;
p3.x = end.x - perpoffset.x + diroffset.x;
p3.y = end.y - perpoffset.y + diroffset.y;
}
output.push_back(p2.x);
output.push_back(p2.y);
output.push_back(p0.x);
output.push_back(p0.y);
output.push_back(p1.x);
output.push_back(p1.y);
output.push_back(p3.x);
output.push_back(p3.y);
}
}
修改
POINTFLOAT multiply(const POINTFLOAT &a, float b)
{
POINTFLOAT result;
result.x = a.x * b;
result.y = a.y * b;
return result;
}
POINTFLOAT normalize(const POINTFLOAT &a)
{
return multiply(a, 1.0f / sqrt(a.x * a.x + a.y * a.y));
}
POINTFLOAT slerp2d( const POINTFLOAT v0,
const POINTFLOAT v1, float t )
{
float dot = (v0.x * v1.x + v1.y * v1.y);
if( dot < -1.0f ) dot = -1.0f;
if( dot > 1.0f ) dot = 1.0f;
float theta_0 = acos( dot );
float theta = theta_0 * t;
POINTFLOAT v2;
v2.x = -v0.y;
v2.y = v0.x;
POINTFLOAT result;
result.x = v0.x * cos(theta) + v2.x * sin(theta);
result.y = v0.y * cos(theta) + v2.y * sin(theta);
return result;
}
void OGLENGINEFUNCTIONS::GenerateLinePoly(const std::vector<std::vector<GLdouble> > &input,
std::vector<GLfloat> &output, int width)
{
output.clear();
if(input.size() < 2)
{
return;
}
float w = width / 2.0f;
//glBegin(GL_TRIANGLES);
for( size_t i = 0; i < input.size()-1; ++i )
{
POINTFLOAT cur;
cur.x = input[i][0];
cur.y = input[i][1];
POINTFLOAT nxt;
nxt.x = input[i+1][0];
nxt.y = input[i+1][1];
POINTFLOAT b;
b.x = nxt.x - cur.x;
b.y = nxt.y - cur.y;
b = normalize(b);
POINTFLOAT b_perp;
b_perp.x = -b.y;
b_perp.y = b.x;
POINTFLOAT p0;
POINTFLOAT p1;
POINTFLOAT p2;
POINTFLOAT p3;
p0.x = cur.x + b_perp.x * w;
p0.y = cur.y + b_perp.y * w;
p1.x = cur.x - b_perp.x * w;
p1.y = cur.y - b_perp.y * w;
p2.x = nxt.x + b_perp.x * w;
p2.y = nxt.y + b_perp.y * w;
p3.x = nxt.x - b_perp.x * w;
p3.y = nxt.y - b_perp.y * w;
output.push_back(p0.x);
output.push_back(p0.y);
output.push_back(p1.x);
output.push_back(p1.y);
output.push_back(p2.x);
output.push_back(p2.y);
output.push_back(p2.x);
output.push_back(p2.y);
output.push_back(p1.x);
output.push_back(p1.y);
output.push_back(p3.x);
output.push_back(p3.y);
// only do joins when we have a prv
if( i == 0 ) continue;
POINTFLOAT prv;
prv.x = input[i-1][0];
prv.y = input[i-1][1];
POINTFLOAT a;
a.x = prv.x - cur.x;
a.y = prv.y - cur.y;
a = normalize(a);
POINTFLOAT a_perp;
a_perp.x = a.y;
a_perp.y = -a.x;
float det = a.x * b.y - b.x * a.y;
if( det > 0 )
{
a_perp.x = -a_perp.x;
a_perp.y = -a_perp.y;
b_perp.x = -b_perp.x;
b_perp.y = -b_perp.y;
}
// TODO: do inner miter calculation
// flip around normals and calculate round join points
a_perp.x = -a_perp.x;
a_perp.y = -a_perp.y;
b_perp.x = -b_perp.x;
b_perp.y = -b_perp.y;
size_t num_pts = 4;
std::vector< POINTFLOAT> round( 1 + num_pts + 1 );
POINTFLOAT nc;
nc.x = cur.x + (a_perp.x * w);
nc.y = cur.y + (a_perp.y * w);
round.front() = nc;
nc.x = cur.x + (b_perp.x * w);
nc.y = cur.y + (b_perp.y * w);
round.back() = nc;
for( size_t j = 1; j < num_pts+1; ++j )
{
float t = (float)j / (float)(num_pts + 1);
if( det > 0 )
{
POINTFLOAT nin;
nin = slerp2d( b_perp, a_perp, 1.0f-t );
nin.x *= w;
nin.y *= w;
nin.x += cur.x;
nin.y += cur.y;
round[j] = nin;
}
else
{
POINTFLOAT nin;
nin = slerp2d( a_perp, b_perp, t );
nin.x *= w;
nin.y *= w;
nin.x += cur.x;
nin.y += cur.y;
round[j] = nin;
}
}
for( size_t j = 0; j < round.size()-1; ++j )
{
output.push_back(cur.x);
output.push_back(cur.y);
if( det > 0 )
{
output.push_back(round[j + 1].x);
output.push_back(round[j + 1].y);
output.push_back(round[j].x);
output.push_back(round[j].y);
}
else
{
output.push_back(round[j].x);
output.push_back(round[j].y);
output.push_back(round[j + 1].x);
output.push_back(round[j + 1].y);
}
}
}
}
答案 0 :(得分:8)
需要编写Eigen,但核心操作应该很容易映射到您正在使用的任何矢量类。
// v0 and v1 are normalized
// t can vary between 0 and 1
// http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/
Vector2f slerp2d( const Vector2f& v0, const Vector2f& v1, float t )
{
float dot = v0.dot(v1);
if( dot < -1.0f ) dot = -1.0f;
if( dot > 1.0f ) dot = 1.0f;
float theta_0 = acos( dot );
float theta = theta_0 * t;
Vector2f v2( -v0.y(), v0.x() );
return ( v0*cos(theta) + v2*sin(theta) );
}
void glPolyline( const vector<Vector2f>& polyline, float width )
{
if( polyline.size() < 2 ) return;
float w = width / 2.0f;
glBegin(GL_TRIANGLES);
for( size_t i = 0; i < polyline.size()-1; ++i )
{
const Vector2f& cur = polyline[ i ];
const Vector2f& nxt = polyline[i+1];
Vector2f b = (nxt - cur).normalized();
Vector2f b_perp( -b.y(), b.x() );
Vector2f p0( cur + b_perp*w );
Vector2f p1( cur - b_perp*w );
Vector2f p2( nxt + b_perp*w );
Vector2f p3( nxt - b_perp*w );
// first triangle
glVertex2fv( p0.data() );
glVertex2fv( p1.data() );
glVertex2fv( p2.data() );
// second triangle
glVertex2fv( p2.data() );
glVertex2fv( p1.data() );
glVertex2fv( p3.data() );
// only do joins when we have a prv
if( i == 0 ) continue;
const Vector2f& prv = polyline[i-1];
Vector2f a = (prv - cur).normalized();
Vector2f a_perp( a.y(), -a.x() );
float det = a.x()*b.y() - b.x()*a.y();
if( det > 0 )
{
a_perp = -a_perp;
b_perp = -b_perp;
}
// TODO: do inner miter calculation
// flip around normals and calculate round join points
a_perp = -a_perp;
b_perp = -b_perp;
size_t num_pts = 4;
vector< Vector2f > round( 1 + num_pts + 1 );
for( size_t j = 0; j <= num_pts+1; ++j )
{
float t = (float)j/(float)(num_pts+1);
if( det > 0 )
round[j] = cur + (slerp2d( b_perp, a_perp, 1.0f-t ) * w);
else
round[j] = cur + (slerp2d( a_perp, b_perp, t ) * w);
}
for( size_t j = 0; j < round.size()-1; ++j )
{
glVertex2fv( cur.data() );
if( det > 0 )
{
glVertex2fv( round[j+1].data() );
glVertex2fv( round[j+0].data() );
}
else
{
glVertex2fv( round[j+0].data() );
glVertex2fv( round[j+1].data() );
}
}
}
glEnd();
}
编辑:屏幕截图:
答案 1 :(得分:3)
怎么样:
像这样:
alt text http://www.geekops.co.uk/photos/0000-00-02%20%28Forum%20images%29/CorrectAngleDrawing.png
蓝色/红色代表您尝试连接的两条线。点缀绿色是您添加的额外一个以平滑角落。上面的图片显示内容会因尖角而略微剪裁。如果这是一个问题,你可以进一步向外延伸两条连接线,并进一步拉出额外的线。
[编辑] 我发现了我的建议存在缺陷。你有一些凹面部分,根本无法正常工作。对于那些场合,你会想要做一些事情,比如画一个倒角边缘:
alt text http://www.geekops.co.uk/photos/0000-00-02%20%28Forum%20images%29/CorrectAngleDrawing2.png
[Edit2] 我对之前发布的代码进行了一些调试。以下应该更有用:
// PolygonOutlineGen.cpp : A small program to calculate 4-point polygons
// to surround an input polygon.
#include <vector>
#include <math.h>
#include <iostream>
#include <iomanip>
using namespace std;
// Describe some structures etc. so the code will compile without
// requiring the GL libraries.
typedef double GLdouble;
typedef float GLfloat;
typedef struct POINTFLOAT
{
float x;
float y;
} POINTFLOAT;
// A function to generate two coordinates representing the start and end
// of a line perpendicular to start/end, offset by 'width' units.
void GenerateOffsetLineCoords(
POINTFLOAT start,
POINTFLOAT end,
int width,
POINTFLOAT& perpStart,
POINTFLOAT& perpEnd)
{
float dirlen;
POINTFLOAT dir;
POINTFLOAT ndir;
POINTFLOAT nperp;
POINTFLOAT perpoffset;
// Work out the offset for a parallel line which is space outwards by 'width' units
dir.x = end.x - start.x;
dir.y = end.y - start.y;
dirlen = sqrt((dir.x * dir.x) + (dir.y * dir.y));
ndir.x = static_cast<float>(dir.x * 1.0 / dirlen);
ndir.y = static_cast<float>(dir.y * 1.0 / dirlen);
nperp.x = -ndir.y;
nperp.y = ndir.x;
perpoffset.x = static_cast<float>(nperp.x * width);
perpoffset.y = static_cast<float>(nperp.y * width);
// Calculate the offset coordinates for the new line
perpStart.x = start.x + perpoffset.x;
perpStart.y = start.y + perpoffset.y;
perpEnd.x = end.x + perpoffset.x;
perpEnd.y = end.y + perpoffset.y;
}
// Function to generate quads of coordinate pairs to surround the 'input'
// polygon.
void GenerateLinePoly(const std::vector<std::vector<GLdouble>> &input,
std::vector<GLfloat> &output, int width)
{
// Make sure we have something to produce an outline for and that it's not contaminated with previous results
output.clear();
if(input.size() < 2)
{
return;
}
// Storage for the pairs of lines which form sections of the outline
POINTFLOAT line1_start;
POINTFLOAT line1_end;
POINTFLOAT line2_start;
POINTFLOAT line2_end;
// Storage for the outer edges of the quads we'll be generating
POINTFLOAT line1offset_start;
POINTFLOAT line1offset_end;
POINTFLOAT line2offset_start;
POINTFLOAT line2offset_end;
// Storage for the line we'll use to make smooth joints between polygon sections.
POINTFLOAT joininglineoffset_start;
POINTFLOAT joininglineoffset_end;
for(unsigned int i = 0; i < input.size() - 2; ++i)
{
// Grab the raw line input for the first line or if we've already done one, just re-use the last results
if( i == 0 )
{
line1_start.x = static_cast<float>(input[i][0]);
line1_start.y = static_cast<float>(input[i][1]);
line1_end.x = static_cast<float>(input[i + 1][0]);
line1_end.y = static_cast<float>(input[i + 1][1]);
GenerateOffsetLineCoords(line1_start, line1_end, width, line1offset_start, line1offset_end);
}
else
{
line1_start = line2_start;
line1offset_start = line2offset_start;
line1_end = line2_end;
line1offset_end = line2offset_end;
}
// Grab the second line and work out the coords of it's offset
line2_start.x = static_cast<float>(input[i+1][0]);
line2_start.y = static_cast<float>(input[i+1][1]);
line2_end.x = static_cast<float>(input[i+2][0]);
line2_end.y = static_cast<float>(input[i+2][1]);
GenerateOffsetLineCoords(line2_start, line2_end, width, line2offset_start, line2offset_end);
// Grab the offset for the line which joins the open end
GenerateOffsetLineCoords(line2offset_start, line1offset_end, width, joininglineoffset_start, joininglineoffset_end);
// Push line 1 onto the output
output.push_back(line1_start.x);
output.push_back(line1_start.y);
output.push_back(line1_end.x);
output.push_back(line1_end.y);
output.push_back(line1offset_end.x);
output.push_back(line1offset_end.y);
output.push_back(line1offset_start.x);
output.push_back(line1offset_start.y);
// Push the new section onto the output
output.push_back(line1offset_end.x);
output.push_back(line1offset_end.y);
output.push_back(line2offset_start.x);
output.push_back(line2offset_start.y);
output.push_back(joininglineoffset_start.x);
output.push_back(joininglineoffset_start.y);
output.push_back(joininglineoffset_end.x);
output.push_back(joininglineoffset_end.y);
}
// TODO: Push the remaining line 2 on.
// TODO: Add one last joining piece between the end and the beginning.
}
int main(int argc, char* argv[])
{
// Describe some input data
std::vector<std::vector<GLdouble>> input;
std::vector<GLdouble> val1; val1.push_back(010.0); val1.push_back(010.0); input.push_back(val1);
std::vector<GLdouble> val2; val2.push_back(050.0); val2.push_back(100.0); input.push_back(val2);
std::vector<GLdouble> val3; val3.push_back(100.0); val3.push_back(100.0); input.push_back(val3);
std::vector<GLdouble> val4; val4.push_back(010.0); val4.push_back(010.0); input.push_back(val4);
// Generate the quads required to outline the shape
std::vector<GLfloat> output;
GenerateLinePoly(input, output, 5);
// Dump the output as pairs of coordinates, grouped into the quads they describe
cout << setiosflags(ios::fixed) << setprecision(1);
for(unsigned int i=0; i < output.size(); i++)
{
if( (i > 0) && ((i)%2==0) ) { cout << endl; }
if( (i > 0) && ((i)%8==0) ) { cout << endl; }
cout << setw(7) << output[i];
}
cout << endl;
return 0;
}
..就我所见,看起来它适用于凸多边形: - )
答案 2 :(得分:2)
This code 渲染correct SVG而不是incorrect one。 它比genpfault的解决方案简单,具有更少的四边形渲染的优势。
此处的每个连接都会在 Jon Cage 的答案的最后一张图片中呈现。
答案 3 :(得分:1)
只需通过一个简单的示例手动完成您的代码,您的输入点将转动90度。旧顶点将与dir
平行,而新顶点将垂直。如果你在线上的点数足够接近,那么你会得到你在图片中看到的奇怪行为。
没有“简单”的解决方案来获得统一的宽度线,但如果你只是一次渲染一对线(即摆脱i > 0
的情况),情况会更好。这将给你一些丑陋的尖角,但你不会得到任何细线。
答案 4 :(得分:1)
您正在反转第一段与其余段之间的方向。从输出向量中提取先前值的块应设置p0和p1点,并且每次都应根据端点计算p2和p3。
即。它应该是:
if(i == 0)
{
p0.x = start.x + perpoffset.x - diroffset.x;
p0.y = start.y + perpoffset.y - diroffset.y;
p1.x = start.x - perpoffset.x - diroffset.x;
p1.y = start.y - perpoffset.y - diroffset.y;
}
else
{
temp = (8 * (i - 1));
p0.x = output[temp + 0];
p0.y = output[temp + 1];
p1.x = output[temp + 6];
p1.y = output[temp + 7];
}
p2.x = end.x + perpoffset.x + diroffset.x;
p2.y = end.y + perpoffset.y + diroffset.y;
p3.x = end.x - perpoffset.x + diroffset.x;
p3.y = end.y - perpoffset.y + diroffset.y;
答案 5 :(得分:1)
您不能使用当前线段上前一个线段的偏移矢量 - 它们与当前线段无关的内容垂直。最好是使用相同的偏移量:
p0.x = start.x + perpoffset.x; p0.y = start.y + perpoffset.y; p1.x = start.x - perpoffset.x; p1.y = start.y - perpoffset.y; p2.x = end.x + perpoffset.x; p2.y = end.y + perpoffset.y; p3.x = end.x - perpoffset.x; p3.y = end.y - perpoffset.y;
然后在每个顶点放一个圆圈以绕过角落。如果舍入不是您想要的方式,则必须更改添加到偏移量的ndir量 - 这取决于在顶点处连接的两个段,而不是一个。您需要识别输入和输出偏移线的交点。从上面开始,并以90度或120度的角度进行一些放大拍摄以获得感觉。对不起,现在没有方便的配方。
最后,您不需要规范化perp向量。无论如何,你计算它的方法都会产生一个单位向量。