牛顿在Java中寻找复杂根的方法

时间:2015-05-17 00:46:20

标签: java newtons-method

我的Java课程中有一个项目,我遇到了麻烦。 该项目基本上是在屏幕上标记坐标,从中制作(复数)多项式,然后使用牛顿方法使用随机猜测求解多项式,并在屏幕上绘制猜测的路径。 我对任何图纸,标记等没有任何问题。 但由于某种原因,我的牛顿方法算法随机错过了根。有时它不会击中它们,有时它会错过一两个。我现在一直在改变几个小时,但我无法想出一个解决方案。 当错过根时,通常我在数组中得到的值要么收敛到无穷大,要么收敛到负无穷大(非常高的数字) 任何帮助都会非常感激。

> // Polynomial evaluation method.  
   public Complex evalPoly(Complex complexArray[], Complex guess) {
        Complex result = new Complex(0, 0);
        for (int i = 0; i < complexArray.length; i++) {
            result = result.gaussMult(guess).addComplex(complexArray[complexArray.length - i - 1]);
        }
        return result;
    }

> // Polynomial differentation method.
    public Complex[] diff(Complex[] comp) {
        Complex[] result = new Complex[comp.length - 1];
        for (int j = 0; j < result.length; j++) {
            result[j] = new Complex(0, 0);
        }
        for (int i = 0; i < result.length - 1; i++) {
            result[i].real = comp[i + 1].real * (i + 1);
            result[i].imaginary = comp[i + 1].imaginary * (i + 1);
        }
        return result;
    }

> // Method which eliminates some of the things that I don't want to go into the array
    public boolean rootCheck2(Complex[] comps, Complex comp) {
        double accLim = 0.01;
        if (comp.real == Double.NaN)
            return false;
        if (comp.real == Double.NEGATIVE_INFINITY || comp.real == Double.POSITIVE_INFINITY)
            return false;
        if (comp.imaginary == Double.NaN)
            return false;
        if (comp.imaginary == Double.NEGATIVE_INFINITY || comp.imaginary == Double.POSITIVE_INFINITY)
            return false;
        for (int i = 0; i < comps.length; i++) {
            if (Math.abs(comp.real - comps[i].real) < accLim && Math.abs(comp.imaginary - comps[i].imaginary) < accLim)
                return false;
        }
        return true;
    }

> // Method which finds (or attempts) to find all of the roots
  public Complex[] addUnique2(Complex[] poly, Bitmap bitmapx, Paint paint, Canvas canvasx) {
        Complex[] rootsC = new Complex[poly.length - 1];
        int iterCount = 0;
        int iteLim = 20000;
        for (int i = 0; i < rootsC.length; i++) {
            rootsC[i] = new Complex(0, 0);
        }
        while (iterCount < iteLim && MainActivity.a < rootsC.length) {
            double guess = -492 + 984 * rand.nextDouble();
            double guess2 = -718 + 1436 * rand.nextDouble();
            if (rootCheck2(rootsC, findRoot2(poly, new Complex(guess, guess2), bitmapx, paint, canvasx))) {
                rootsC[MainActivity.a] = findRoot2(poly, new Complex(guess, guess2), bitmapx, paint, canvasx);
                MainActivity.a = MainActivity.a + 1;
            }
            iterCount = iterCount + 1;
        }
        return rootsC;
    }

> // Method which finds a single root of the complex polynomial.
    public Complex findRoot2(Complex[] comp, Complex guess, Bitmap bitmapx, Paint paint, Canvas canvasx) {
        int iterCount = 0;
        double accLim = 0.001;
        int itLim = 20000;
        Complex[] diffedComplex = diff(comp);
        while (Math.abs(evalPoly(comp, guess).real) >= accLim && Math.abs(evalPoly(comp, guess).imaginary) >= accLim) {
            if (iterCount >= itLim) {
                return new Complex(Double.NaN, Double.NaN);
            }
            if (evalPoly(diffedComplex, guess).real == 0 || evalPoly(diffedComplex, guess).imaginary == 0) {
                return new Complex(Double.NaN, Double.NaN);
            }
            iterCount = iterCount + 1;
            guess.real = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess))).real;
            guess.imaginary = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess))).imaginary;
            drawCircles((float) guess.real, (float) guess.imaginary, paint, canvasx, bitmapx);
        }
        return guess;
    }

> // Drawing method
    void drawCircles(float x, float y, Paint paint, Canvas canvasx, Bitmap bitmapx) {
        canvasx.drawCircle(x + 492, shiftBackY(y), 5, paint);
        coordPlane.setAdjustViewBounds(false);
        coordPlane.setImageBitmap(bitmapx);
    }

}

1 个答案:

答案 0 :(得分:0)

错误1

guess.real = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess))).real;
guess.imaginary = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess))).imaginary;

首先介绍一个不必要的并发症,然后引入一个错误,使其偏离牛顿方法。第二行中使用的guess与第一行中使用的guess不同,因为实际部分已更改。

为什么不像评估程序那样使用

中的复杂分配
guess = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess)));

错误2(更新)

在微分多项式的计算中,你缺少

中的最高学位项
for (int i = 0; i < result.length - 1; i++) {
   result[i].real = comp[i + 1].real * (i + 1);
   result[i].imaginary = comp[i + 1].imaginary * (i + 1);

应该是i < result.lengthi < comp.length - 1。使用错误的导数当然会导致迭代中出现不可预测的结果。

在根边界和初始值

对于每个多项式,您可以指定外部根绑定,例如

R = 1+max(abs(c[0:N-1]))/abs(c[N])

在此圈子上或附近使用3*N点,随机或等距,应该会增加到达每个根的概率。

但找到所有根的常用方法是使用多项式放气,即拆分对应于已找到的根近似的线性因子。然后使用完整多项式的几个额外的牛顿步骤恢复最大精度。

牛顿分形

每个根都有一个盆地或吸引域,域之间有分形边界。在重建与

中使用的情况类似的情况

original location of roots produced by program

我计算了一个牛顿分形,表明两个根的吸引力和另外两个的无知是其背后的数学特征,而不是实现牛顿方法的错误。

Newton fractal for a similar root distribution

相同颜色的不同色调属于同一根的域,其中亮度对应于用于到达根周围白色区域的步数。