系统:Cloudera Quickstart VM 5.4上的Spark 1.3.0(Anaconda Python dist。)
这是一个Spark DataFrame:
from pyspark.sql import SQLContext
from pyspark.sql.types import *
sqlContext = SQLContext(sc)
data = sc.parallelize([('Foo',41,'US',3),
('Foo',39,'UK',1),
('Bar',57,'CA',2),
('Bar',72,'CA',3),
('Baz',22,'US',6),
(None,75,None,7)])
schema = StructType([StructField('Name', StringType(), True),
StructField('Age', IntegerType(), True),
StructField('Country', StringType(), True),
StructField('Score', IntegerType(), True)])
df = sqlContext.createDataFrame(data,schema)
data.show()
Name Age Country Score
Foo 41 US 3
Foo 39 UK 1
Bar 57 CA 2
Bar 72 CA 3
Baz 22 US 6
null 75 null 7
然而,这些都不起作用!
df.dropna()
df.na.drop()
我收到此消息:
>>> df.show()
Name Age Country Score
Foo 41 US 3
Foo 39 UK 1
Bar 57 CA 2
Bar 72 CA 3
Baz 22 US 6
null 75 null 7
>>> df.dropna().show()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/spark/python/pyspark/sql/dataframe.py", line 580, in __getattr__
jc = self._jdf.apply(name)
File "/usr/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__
File "/usr/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o50.apply.
: org.apache.spark.sql.AnalysisException: Cannot resolve column name "dropna" among (Name, Age, Country, Score);
at org.apache.spark.sql.DataFrame$$anonfun$resolve$1.apply(DataFrame.scala:162)
at org.apache.spark.sql.DataFrame$$anonfun$resolve$1.apply(DataFrame.scala:162)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.sql.DataFrame.resolve(DataFrame.scala:161)
at org.apache.spark.sql.DataFrame.col(DataFrame.scala:436)
at org.apache.spark.sql.DataFrame.apply(DataFrame.scala:426)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Thread.java:745)
还有其他人遇到过这个问题吗?解决方法是什么? Pyspark似乎是我正在寻找一个名为“na”的专栏。任何帮助将不胜感激!
答案 0 :(得分:7)
tl; dr 方法na
和dropna
仅在Spark 1.3.1之后可用。
你犯的错误很少:
data = sc.parallelize([....('',75,'', 7 )])
,您打算使用''
来代表None
,但是,它只是一个字符串而不是null
na
和dropna
都是dataFrame类的方法,因此,您应该使用df
调用它。
可运行代码:
data = sc.parallelize([('Foo',41,'US',3),
('Foo',39,'UK',1),
('Bar',57,'CA',2),
('Bar',72,'CA',3),
('Baz',22,'US',6),
(None, 75, None, 7)])
schema = StructType([StructField('Name', StringType(), True),
StructField('Age', IntegerType(), True),
StructField('Country', StringType(), True),
StructField('Score', IntegerType(), True)])
df = sqlContext.createDataFrame(data,schema)
df.dropna().show()
df.na.drop().show()
答案 1 :(得分:-1)
我意识到这个问题是在一年前被问到的,以防万一离开Scala的解决方案,以防万一有人在这里寻找相同的
val data = sc.parallelize(List(("Foo",41,"US",3), ("Foo",39,"UK",1),
("Bar",57,"CA",2), ("Bar",72,"CA",3), ("Baz",22,"US",6), (None, 75,
None, 7)))
val schema = StructType(Array(StructField("Name", StringType, true),
StructField("Age", IntegerType, true), StructField("Country",
StringType, true), StructField("Score", IntegerType, true)))
val dat = data.map(d => Row(d._1, d._2, d._3, d._4))
val df = sqlContext.createDataFrame(dat, schema)
df.na.drop()
注意: 上面的解决方案仍然无法在Scala中给出正确的结果,也不确定Scala和python绑定之间的实现有什么不同。如果缺少的数据表示为 null ,则 na.drop 有效。它失败了“”而没有。另一种方法是使用 withColumn 函数来处理不同形式的缺失值