Pandas dropna()功能不起作用

时间:2018-04-07 21:07:30

标签: python pandas data-science

我正在尝试从pandas数据帧中删除NA值。

我使用了dropna()(它应该从数据帧中删除所有NA行)。然而,它不起作用。

以下是代码:

import pandas as pd
import numpy as np
prison_data = pd.read_csv('https://andrewshinsuke.me/docs/compas-scores-two-years.csv')

这就是你获取数据框的方式。如下所示,默认的read_csv方法确实将NA数据点转换为np.nan

np.isnan(prison_data.head()['out_custody'][4])

Out[2]: True

方便地,DF的head()已包含NaN值(在out_custody列中),因此打印prison_data.head(),您得到:

   id                name   first         last compas_screening_date   sex  

0   1    miguel hernandez  miguel    hernandez            2013-08-14  Male
1   3         kevon dixon   kevon        dixon            2013-01-27  Male
2   4            ed philo      ed        philo            2013-04-14  Male
3   5         marcu brown   marcu        brown            2013-01-13  Male
4   6  bouthy pierrelouis  bouthy  pierrelouis            2013-03-26  Male

      dob  age          age_cat              race      ...        
0  1947-04-18   69  Greater than 45             Other      ...
1  1982-01-22   34          25 - 45  African-American      ...
2  1991-05-14   24     Less than 25  African-American      ...
3  1993-01-21   23     Less than 25  African-American      ...
4  1973-01-22   43          25 - 45             Other      ...

   v_decile_score  v_score_text  v_screening_date  in_custody  out_custody  

0               1           Low        2013-08-14  2014-07-07   2014-07-14
1               1           Low        2013-01-27  2013-01-26   2013-02-05
2               3           Low        2013-04-14  2013-06-16   2013-06-16
3               6        Medium        2013-01-13         NaN          NaN
4               1           Low        2013-03-26         NaN          NaN

priors_count.1 start   end event two_year_recid
0               0     0   327     0              0
1               0     9   159     1              1
2               4     0    63     0              1
3               1     0  1174     0              0
4               2     0  1102     0              0

但是,运行prison_data.dropna()不会以任何方式更改数据框。

prison_data.dropna()
np.isnan(prison_data.head()['out_custody'][4])


Out[3]: True

2 个答案:

答案 0 :(得分:3)

默认情况下,

df.dropna()会返回没有NaN值的新数据集。因此,您必须将其分配给变量

df = df.dropna()

如果您想要修改df inplace,则必须明确指定

df.dropna(inplace= True)

答案 1 :(得分:0)

它不起作用,因为每行至少有一个nan