为什么这段代码的时间复杂度为O(x n m)?
此代码的时间复杂度是否渐近紧张?
为什么?
#include<conio.h>
#include<iostream>
using namespace std;
int main()
{
int a[10][10], b[10][10], c[10][10];
int x, y, i, j, m, n;
cout << "\nEnter the number of rows and columns for Matrix A:::\n\n";
cin >> x >> y;
// x denotes number rows in matrix A
// y denotes number columns in matrix A
cout << "\n\nEnter elements for Matrix A :::\n\n";
for (i = 0; i < x; i++)
{
for (j = 0; j < y; j++)
{
cin >> a[i][j];
}
cout << "\n";
}
cout << "\n\nMatrix A :\n\n";
for (i = 0; i < x; i++)
{
for (j = 0; j < y; j++)
{
cout << "\t" << a[i][j];
}
cout << "\n\n";
}
cout << "\n-----------------------------------------------------------\n";
cout << "\nEnter the number of rows and columns for Matrix B:::\n\n";
cin >> m >> n;
// m denotes number rows in matrix B
// n denotes number columns in matrix B
cout << "\n\nEnter elements for Matrix B :::\n\n";
for (i = 0; i < m; i++)
{
for (j = 0; j < n; j++)
{
cin >> b[i][j];
}
cout << "\n";
}
cout << "\n\nMatrix B :\n\n";
for (i = 0; i < m; i++)
{
for (j = 0; j < n; j++)
{
cout << "\t" << b[i][j];
}
cout << "\n\n";
}
if (y == m)
{
for (i = 0; i < x; i++)
{
for (j = 0; j < n; j++)
{
c[i][j] = 0;
for (int k = 0; k < m; k++)
{
c[i][j] = c[i][j] + a[i][k] * b[k][j];
}
}
}
cout
<< "\n-----------------------------------------------------------\n";
cout << "\n\nMultiplication of Matrix A and Matrix B :\n\n";
for (i = 0; i < x; i++)
{
for (j = 0; j < n; j++)
{
cout << "\t" << c[i][j];
}
cout << "\n\n";
}
}
else
{
cout << "\n\nMultiplication is not possible";
}
getch();
return 0;
}
答案 0 :(得分:0)
因为大多数计算都是在这里完成的:
for (i = 0; i < x; i++)
{
for (j = 0; j < n; j++)
{
c[i][j] = 0;
for (int k = 0; k < m; k++)
{
c[i][j] = c[i][j] + a[i][k] * b[k][j];
}
}
}
此处的加法,乘法和赋值等基本操作数的近似值为x*n*m
。这就是为什么这个算法有O(x*n*m)
渐近的原因。但是就渐近而言,矩阵乘法可以更快地完成。只需查看有关矩阵乘法和大数字符号的相关文章。