渐近符号与函数组合的增长:差异

时间:2015-02-16 01:28:50

标签: time-complexity big-o

我需要证明或反驳以下猜想:

如果f(n)= O(h(n))AND g(n)= O(k(n))则(f - g)(n)= O(h(n) - k(n) )

我知道增长组合的总和和乘积定理,但我找不到在这里应用它们的方法,即使我知道减法可以重写为加法。我看到的所有地方都定义了所提到的定理,但缺少减法的例子。

1 个答案:

答案 0 :(得分:4)

您的陈述不正确,请考虑以下反例:

选择f(n) = 2n2 = O(n2)g(n) = n2 = O(n2)。我们有:

(f-g)(n) = n2,绝对不是常数,因此(f-g)(n) ≠ O(1)