关于 Rle (< =)的关系,我可以在 Rplus (+)和 Rminus ( - )里面重写,因为两个二元运算符的两个位置都有固定的方差:
Require Import Setoid Relation_Definitions Reals.
Open Scope R.
Add Parametric Relation : R Rle
reflexivity proved by Rle_refl
transitivity proved by Rle_trans
as Rle_setoid_relation.
Add Parametric Morphism : Rplus with
signature Rle ++> Rle ++> Rle as Rplus_Rle_mor.
intros ; apply Rplus_le_compat ; assumption.
Qed.
Add Parametric Morphism : Rminus with
signature Rle ++> Rle --> Rle as Rminus_Rle_mor.
intros ; unfold Rminus ;
apply Rplus_le_compat;
[assumption | apply Ropp_le_contravar ; assumption].
Qed.
Goal forall (x1 x2 y1 y2 : R),
x1 <= x2 -> y1 <= y2 ->
x1 - y2 <= x2 - y1.
Proof.
intros x1 x2 y1 y2 x1_le_x2 y1_le_y2;
rewrite x1_le_x2; rewrite y1_le_y2;
reflexivity.
Qed.
不幸的是, Rmult (*)没有这个属性:方差取决于其他被乘数是正数还是负数。是否有可能定义条件态射,以便Coq执行重写步骤并简单地将被乘数的非负性作为证明义务?感谢。
答案 0 :(得分:1)
我认为定义你想要的东西应该是可能的,但可能不是微不足道的。
然而,您可能对使用math-comp的代数层次结构的不同方法感兴趣,请参阅:
Lemma ler_pmul2l x : 0 < x → {mono *%R x : x y / x ≤ y}.
和相关的lemmas(http://math-comp.github.io/math-comp/htmldoc/mathcomp.algebra.ssrnum.html)。在ssreflect中<=
是一个布尔关系,因此可以进行香草重写,因为a <= b
实际上意味着a <= b = true
。