MPU-9150 XYZ值无法正确输出

时间:2014-11-25 00:55:50

标签: c arduino arduino-uno

以下是SparkFun和Adafruit的代码片段,它使用MPU-9150将3轴的加速度,陀螺仪和罗盘输出到显示器。我试图修改代码,因此我打印到串口,因为我没有要使用的显示器。但是,无论筹码位置或动作如何,我总能获得相同的输出。

输出:

ax = 0.00 ay = 0.00 az = 0.00 mg
gx = 0.00 gy = 0.00 gz = 0.00 deg/s
mx = 0 my = 0 mz = 0 mG
q0 = 1.00 qx = 0.00 qy = 0.00 qz = 0.00
Yaw, Pitch, Roll: 0.00, 0.00, 0.00
rate = 778.82 Hz
 x   y   z  0
0
0
mg
0
0
0
o/s
0
0
0
mG
0
0
0
ypr

代码:

#include <Wire.h>
#include "I2Cdev.h"
#include "MPU6050_9Axis_MotionApps41.h"
//#include <Adafruit_GFX.h>
//#include <Adafruit_PCD8544.h>

// Using NOKIA 5110 monochrome 84 x 48 pixel display
// pin 9 - Serial clock out (SCLK)
// pin 8 - Serial data out (DIN)
// pin 7 - Data/Command select (D/C)
// pin 5 - LCD chip select (CS)
// pin 6 - LCD reset (RST)
//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);

// Declare device MPU6050 class
MPU6050 mpu;

// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
#define GyroMeasError PI * (40.0f / 180.0f)       // gyroscope measurement error in rads/s (shown as 3 deg/s)
#define GyroMeasDrift PI * (0.0f / 180.0f)      // gyroscope measurement drift in rad/s/s (shown as 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense; 
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy. 
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
#define beta sqrt(3.0f / 4.0f) * GyroMeasError   // compute beta
#define zeta sqrt(3.0f / 4.0f) * GyroMeasDrift   // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f

int16_t a1, a2, a3, g1, g2, g3, m1, m2, m3;     // raw data arrays reading
uint16_t count = 0;  // used to control display output rate
uint16_t delt_t = 0; // used to control display output rate
uint16_t mcount = 0; // used to control display output rate
uint8_t MagRate;     // read rate for magnetometer data

float pitch, yaw, roll;
float deltat = 0.0f;        // integration interval for both filter schemes
uint16_t lastUpdate = 0; // used to calculate integration interval
uint16_t now = 0;        // used to calculate integration interval

float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};    // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f};       // vector to hold integral error for Mahony method


void setup()
{
  Serial.begin(38400); // Start serial at 38400 bps

  //display.begin(); // Initialize the display
  //display.setContrast(58); // Set the contrast
  //display.setRotation(0); //  0 or 2) width = width, 1 or 3) width = height, swapped etc.

// Start device display with ID of sensor
  /*
  display.clearDisplay();
  display.setTextSize(2);
  display.setCursor(0,0);  display.print("MPU9150");
  display.setTextSize(1);
  display.setCursor(0, 20); display.print("9 DOF sensor");
  display.setCursor(0, 30); display.print("data fusion");
  display.setCursor(20, 40); display.print("AHRS");
  display.display();
  delay(2000);

// Set up for data display
  display.setTextSize(1); // Set text size to normal, 2 is twice normal etc.
  display.setTextColor(BLACK); // Set pixel color; 1 on the monochrome screen
  display.clearDisplay();   // clears the screen and buffer
  display.display();
    */       

    // initialize MPU6050 device
    Serial.println(F("Initializing I2C devices..."));
    mpu.initialize();

    // verify connection
    Serial.println(F("Testing device connections..."));
    Serial.println(mpu.testConnection() ? F("MPU9150 connection successful") : F("MPU9150 connection failed"));

// Set up the accelerometer, gyro, and magnetometer for data output

   mpu.setRate(7); // set gyro rate to 8 kHz/(1 * rate) shows 1 kHz, accelerometer ODR is fixed at 1 KHz

   MagRate = 10; // set magnetometer read rate in Hz; 10 to 100 (max) Hz are reasonable values

// Digital low pass filter configuration. 
// It also determines the internal sampling rate used by the device as shown in the table below.
// The accelerometer output rate is fixed at 1kHz. This means that for a Sample
// Rate greater than 1kHz, the same accelerometer sample may be output to the
// FIFO, DMP, and sensor registers more than once.
/*
 *          |   ACCELEROMETER    |           GYROSCOPE
 * DLPF_CFG | Bandwidth | Delay  | Bandwidth | Delay  | Sample Rate
 * ---------+-----------+--------+-----------+--------+-------------
 * 0        | 260Hz     | 0ms    | 256Hz     | 0.98ms | 8kHz
 * 1        | 184Hz     | 2.0ms  | 188Hz     | 1.9ms  | 1kHz
 * 2        | 94Hz      | 3.0ms  | 98Hz      | 2.8ms  | 1kHz
 * 3        | 44Hz      | 4.9ms  | 42Hz      | 4.8ms  | 1kHz
 * 4        | 21Hz      | 8.5ms  | 20Hz      | 8.3ms  | 1kHz
 * 5        | 10Hz      | 13.8ms | 10Hz      | 13.4ms | 1kHz
 * 6        | 5Hz       | 19.0ms | 5Hz       | 18.6ms | 1kHz
 */
  mpu.setDLPFMode(4); // set bandwidth of both gyro and accelerometer to ~20 Hz

// Full-scale range of the gyro sensors:
// 0 = +/- 250 degrees/sec, 1 = +/- 500 degrees/sec, 2 = +/- 1000 degrees/sec, 3 = +/- 2000 degrees/sec
  mpu.setFullScaleGyroRange(0); // set gyro range to 250 degrees/sec

// Full-scale accelerometer range.
// The full-scale range of the accelerometer: 0 = +/- 2g, 1 = +/- 4g, 2 = +/- 8g, 3 = +/- 16g
  mpu.setFullScaleAccelRange(0); // set accelerometer to 2 g range

  mpu.setIntDataReadyEnabled(true); // enable data ready interrupt
}

void loop()
{
         if(mpu.getIntDataReadyStatus() == 1) { // wait for data ready status register to update all data registers
            mcount++;
           // read the raw sensor data
            mpu.getAcceleration  ( &a1, &a2, &a3  );
            ax = a1*2.0f/32768.0f; // 2 g full range for accelerometer
            ay = a2*2.0f/32768.0f;
            az = a3*2.0f/32768.0f;

            mpu.getRotation  ( &g1, &g2, &g3  );
            gx = g1*250.0f/32768.0f; // 250 deg/s full range for gyroscope
            gy = g2*250.0f/32768.0f;
            gz = g3*250.0f/32768.0f;
//  The gyros and accelerometers can in principle be calibrated in addition to any factory calibration but they are generally
//  pretty accurate. You can check the accelerometer by making sure the reading is +1 g in the positive direction for each axis.
//  The gyro should read zero for each axis when the sensor is at rest. Small or zero adjustment should be needed for these sensors.
//  The magnetometer is a different thing. Most magnetometers will be sensitive to circuit currents, computers, and 
//  other both man-made and natural sources of magnetic field. The rough way to calibrate the magnetometer is to record
//  the maximum and minimum readings (generally achieved at the North magnetic direction). The average of the sum divided by two
//  should provide a pretty good calibration offset. Don't forget that for the MPU9150, the magnetometer x- and y-axes are switched 
//  compared to the gyro and accelerometer!
            if (mcount > 1000/MagRate) {  // this is a poor man's way of setting the magnetometer read rate (see below) 
            mpu.getMag  ( &m1, &m2, &m3 );
            mx = m1*10.0f*1229.0f/4096.0f + 18.0f; // milliGauss (1229 microTesla per 2^12 bits, 10 mG per microTesla)
            my = m2*10.0f*1229.0f/4096.0f + 70.0f; // apply calibration offsets in mG that correspond to your environment and magnetometer
            mz = m3*10.0f*1229.0f/4096.0f + 270.0f;
            mcount = 0;
            }           
         }

  now = micros();
  deltat = ((now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
  lastUpdate = now;
  // Sensors x (y)-axis of the accelerometer is aligned with the y (x)-axis of the magnetometer;
  // the magnetometer z-axis (+ down) is opposite to z-axis (+ up) of accelerometer and gyro!
  // We have to make some allowance for this orientationmismatch in feeding the output to the quaternion filter.
  // For the MPU-9150, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like
  // in the LSM9DS0 sensor. This rotation can be modified to allow any convenient orientation convention.
  // This is ok by aircraft orientation standards!  
  // Pass gyro rate as rad/s
   MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
// MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);

    // Serial print and/or display at 0.5 s rate independent of data rates
    delt_t = millis() - count;
    if (delt_t > 500) { // update LCD once per half-second independent of read rate

    Serial.print("ax = "); Serial.print((int)1000*ax);  
    Serial.print(" ay = "); Serial.print((int)1000*ay); 
    Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
    Serial.print("gx = "); Serial.print( gx, 2); 
    Serial.print(" gy = "); Serial.print( gy, 2); 
    Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
    Serial.print("mx = "); Serial.print( (int)mx ); 
    Serial.print(" my = "); Serial.print( (int)my ); 
    Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");

    Serial.print("q0 = "); Serial.print(q[0]);
    Serial.print(" qx = "); Serial.print(q[1]); 
    Serial.print(" qy = "); Serial.print(q[2]); 
    Serial.print(" qz = "); Serial.println(q[3]); 


  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
  // In this coordinate system, the positive z-axis is down toward Earth. 
  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
    pitch *= 180.0f / PI;
    yaw   *= 180.0f / PI - 13.8; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
    roll  *= 180.0f / PI;

    Serial.print("Yaw, Pitch, Roll: ");
    Serial.print(yaw, 2);
    Serial.print(", ");
    Serial.print(pitch, 2);
    Serial.print(", ");
    Serial.println(roll, 2);

    Serial.print("rate = "); Serial.print((float)1.0f/deltat, 2); Serial.println(" Hz");

    /*
    display.clearDisplay();


    display.setCursor(0, 0); display.print(" x   y   z  ");

    display.setCursor(0,  8); display.print((int)(1000*ax)); 
    display.setCursor(24, 8); display.print((int)(1000*ay)); 
    display.setCursor(48, 8); display.print((int)(1000*az)); 
    display.setCursor(72, 8); display.print("mg");

    display.setCursor(0,  16); display.print((int)(gx)); 
    display.setCursor(24, 16); display.print((int)(gy)); 
    display.setCursor(48, 16); display.print((int)(gz)); 
    display.setCursor(66, 16); display.print("o/s");    

    display.setCursor(0,  24); display.print((int)(mx)); 
    display.setCursor(24, 24); display.print((int)(my)); 
    display.setCursor(48, 24); display.print((int)(mz)); 
    display.setCursor(72, 24); display.print("mG");    

    display.setCursor(0,  32); display.print((int)(yaw)); 
    display.setCursor(24, 32); display.print((int)(pitch)); 
    display.setCursor(48, 32); display.print((int)(roll)); 
    display.setCursor(66, 32); display.print("ypr");  

    // With these settings the filter is updating at a ~145 Hz rate using the Madgwick scheme and 
    // >200 Hz using the Mahony scheme even though the display refreshes at only 2 Hz.
    // The filter update rate is determined mostly by the mathematical steps in the respective algorithms, 
    // the processor speed (8 MHz for the 3.3V Pro Mini), and the magnetometer ODR:
    // an ODR of 10 Hz for the magnetometer produce the above rates, maximum magnetometer ODR of 100 Hz produces
    // filter update rates of 36 - 145 and ~38 Hz for the Madgwick and Mahony schemes, respectively. 
    // This is presumably because the magnetometer read takes longer than the gyro or accelerometer reads.
    // This filter update rate should be fast enough to maintain accurate platform orientation for 
    // stabilization control of a fast-moving robot or quadcopter. Compare to the update rate of 200 Hz
    // produced by the on-board Digital Motion Processor of Invensense's MPU6050 6 DoF and MPU9150 9DoF sensors.
    // The 3.3 V 8 MHz Pro Mini is doing pretty well!
    display.setCursor(0, 40); display.print("rt: "); display.print((1/deltat)); display.print(" Hz"); 

    display.display();
    count = millis();
    */
    Serial.print(" x   y   z  ");

    Serial.println((int)(1000*ax)); 
    Serial.println((int)(1000*ay)); 
    Serial.println((int)(1000*az)); 
    Serial.println("mg");
    Serial.println((int)(gx)); 
    Serial.println((int)(gy)); 
    Serial.println((int)(gz)); 
    Serial.println("o/s");    

    Serial.println((int)(mx)); 
    Serial.println((int)(my)); 
    Serial.println((int)(mz)); 
    Serial.println("mG");    

    Serial.println((int)(yaw)); 
    Serial.println((int)(pitch)); 
    Serial.println((int)(roll)); 
    Serial.println("ypr");
    }
}


// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
        void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
        {
            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
            float norm;
            float hx, hy, _2bx, _2bz;
            float s1, s2, s3, s4;
            float qDot1, qDot2, qDot3, qDot4;

            // Auxiliary variables to avoid repeated arithmetic
            float _2q1mx;
            float _2q1my;
            float _2q1mz;
            float _2q2mx;
            float _4bx;
            float _4bz;
            float _2q1 = 2.0f * q1;
            float _2q2 = 2.0f * q2;
            float _2q3 = 2.0f * q3;
            float _2q4 = 2.0f * q4;
            float _2q1q3 = 2.0f * q1 * q3;
            float _2q3q4 = 2.0f * q3 * q4;
            float q1q1 = q1 * q1;
            float q1q2 = q1 * q2;
            float q1q3 = q1 * q3;
            float q1q4 = q1 * q4;
            float q2q2 = q2 * q2;
            float q2q3 = q2 * q3;
            float q2q4 = q2 * q4;
            float q3q3 = q3 * q3;
            float q3q4 = q3 * q4;
            float q4q4 = q4 * q4;

            // Normalise accelerometer measurement
            norm = sqrt(ax * ax + ay * ay + az * az);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f/norm;
            ax *= norm;
            ay *= norm;
            az *= norm;

            // Normalise magnetometer measurement
            norm = sqrt(mx * mx + my * my + mz * mz);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f/norm;
            mx *= norm;
            my *= norm;
            mz *= norm;

            // Reference direction of Earth's magnetic field
            _2q1mx = 2.0f * q1 * mx;
            _2q1my = 2.0f * q1 * my;
            _2q1mz = 2.0f * q1 * mz;
            _2q2mx = 2.0f * q2 * mx;
            hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
            hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
            _2bx = sqrt(hx * hx + hy * hy);
            _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
            _4bx = 2.0f * _2bx;
            _4bz = 2.0f * _2bz;

            // Gradient decent algorithm corrective step
            s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
            norm = 1.0f/norm;
            s1 *= norm;
            s2 *= norm;
            s3 *= norm;
            s4 *= norm;

            // Compute rate of change of quaternion
            qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
            qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
            qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
            qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;

            // Integrate to yield quaternion
            q1 += qDot1 * deltat;
            q2 += qDot2 * deltat;
            q3 += qDot3 * deltat;
            q4 += qDot4 * deltat;
            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
            norm = 1.0f/norm;
            q[0] = q1 * norm;
            q[1] = q2 * norm;
            q[2] = q3 * norm;
            q[3] = q4 * norm;

        }



 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
 // measured ones. 
            void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
        {
            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
            float norm;
            float hx, hy, bx, bz;
            float vx, vy, vz, wx, wy, wz;
            float ex, ey, ez;
            float pa, pb, pc;

            // Auxiliary variables to avoid repeated arithmetic
            float q1q1 = q1 * q1;
            float q1q2 = q1 * q2;
            float q1q3 = q1 * q3;
            float q1q4 = q1 * q4;
            float q2q2 = q2 * q2;
            float q2q3 = q2 * q3;
            float q2q4 = q2 * q4;
            float q3q3 = q3 * q3;
            float q3q4 = q3 * q4;
            float q4q4 = q4 * q4;   

            // Normalise accelerometer measurement
            norm = sqrt(ax * ax + ay * ay + az * az);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f / norm;        // use reciprocal for division
            ax *= norm;
            ay *= norm;
            az *= norm;

            // Normalise magnetometer measurement
            norm = sqrt(mx * mx + my * my + mz * mz);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f / norm;        // use reciprocal for division
            mx *= norm;
            my *= norm;
            mz *= norm;

            // Reference direction of Earth's magnetic field
            hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
            hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
            bx = sqrt((hx * hx) + (hy * hy));
            bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);

            // Estimated direction of gravity and magnetic field
            vx = 2.0f * (q2q4 - q1q3);
            vy = 2.0f * (q1q2 + q3q4);
            vz = q1q1 - q2q2 - q3q3 + q4q4;
            wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
            wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
            wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);  

            // Error is cross product between estimated direction and measured direction of gravity
            ex = (ay * vz - az * vy) + (my * wz - mz * wy);
            ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
            ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
            if (Ki > 0.0f)
            {
                eInt[0] += ex;      // accumulate integral error
                eInt[1] += ey;
                eInt[2] += ez;
            }
            else
            {
                eInt[0] = 0.0f;     // prevent integral wind up
                eInt[1] = 0.0f;
                eInt[2] = 0.0f;
            }

            // Apply feedback terms
            gx = gx + Kp * ex + Ki * eInt[0];
            gy = gy + Kp * ey + Ki * eInt[1];
            gz = gz + Kp * ez + Ki * eInt[2];

            // Integrate rate of change of quaternion
            pa = q2;
            pb = q3;
            pc = q4;
            q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
            q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
            q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
            q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);

            // Normalise quaternion
            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
            norm = 1.0f / norm;
            q[0] = q1 * norm;
            q[1] = q2 * norm;
            q[2] = q3 * norm;
            q[3] = q4 * norm;

        }

1 个答案:

答案 0 :(得分:1)

这里有一些代码可供您查看:http://playground.arduino.cc/Main/MPU-9150 另外,请看一下:https://github.com/zeran/MPU9150Lib 这对你来说似乎很有趣。