Stata预测GARCH

时间:2014-05-05 20:24:45

标签: stata predict

我想做一些非常简单的事情,但它不起作用!

我需要查看GARCH模型的预测(和错误)。主变量es" dowclose",我的想法是看看GARCH模型是否适合这个变量。

我使用这个简单的代码,但预测只是0&#39>

webuse dow1.dta
arch dowclose, noconstant arch(1) garch(1)
predict dow_hat, y

ARCH结果:

ARCH family regression

Sample: 1 - 9341                                   Number of obs   =      9341
Distribution: Gaussian                             Wald chi2(.)    =         .
Log likelihood = -76191.43                         Prob > chi2     =         .

------------------------------------------------------------------------------
         |                 OPG
dowclose |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    arch |
     L1. |    1.00144   6.418855     0.16   0.876    -11.57929    13.58217
         |
   garch |
     L1. |   -.001033   6.264372    -0.00   1.000    -12.27898    12.27691
         |
   _cons |   56.60589   620784.7     0.00   1.000     -1216659     1216772
------------------------------------------------------------------------------

1 个答案:

答案 0 :(得分:0)

这是可以预期的:你没有协变量也没有拦截,因此无法预测。

这是一个简单的OLS回归,可以解决问题:

. sysuse auto
(1978 Automobile Data)

. reg price, nocons

      Source |       SS       df       MS              Number of obs =      74
-------------+------------------------------           F(  0,    74) =    0.00
       Model |           0     0           .           Prob > F      =       .
    Residual |  3.4478e+09    74  46592355.7           R-squared     =  0.0000
-------------+------------------------------           Adj R-squared =  0.0000
       Total |  3.4478e+09    74  46592355.7           Root MSE      =  6825.9

------------------------------------------------------------------------------
       price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------------------------------------------------------------------

. predict phat
(option xb assumed; fitted values)

. sum phat

    Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
        phat |        74           0           0          0          0