我再次遇到Matlab中Gauss-Seidel方法的问题。这是:
function [x] = ex1_3(A,b)
format long
sizeA=size(A,1);
x=zeros(sizeA,1);
%Just a check for the conditions of the Gauss-Seidel Method (if it has dominant diagonal)
for i=1:sizeA
sum=0;
for j=1:sizeA
if i~=j
sum=sum+abs(A(i,j));
end
end
if abs(A(i,i))<sum
fprintf('\nGauss-Seidel''s conditions not met!\n');
return
end
end
%Actual Gauss-Seidel Method
max_temp=10^(-6); %Pass first iteration
while max_temp>(0.5*10^(-6))
xprevious=x;
for i=1:sizeA
x(i,1)=b(i,1);
for j=1:sizeA
if i~=j
x(i,1)=x(i,1)-A(i,j)*x(j,1);
end
end
x(i,1)=x(i,1)/A(i,i);
end
x
%Calculating infinite norm of vector x-xprevious
temp=x-xprevious;
max_temp=temp(1,1);
for i=2:sizeA
if abs(temp(i,1))>max_temp
max_temp=abs(temp(i,1));
end
end
end
它实际上适用于100x100矩阵或更小的矩阵。但是,我的导师希望它适用于100000x100000矩阵。起初很难创建矩阵本身,但我设法从这里得到一点帮助: Matlab Help Center
现在,我用A作为参数调用ex1_3函数,但它真的很慢。实际上它永远不会结束。我怎样才能使它发挥作用?
这是我创建我的导师想要的特定矩阵的代码: 重要的是它满足这些条件: A(i; i)= 3,A(i - 1; i)= A(i; i + 1)= -1 n = 100000
b=ones(100000,1);
b(1,1)=2;
b(100000,1)=2;
i=zeros(299998,1); %Matrix with the lines that we want to put nonzero elements
j=zeros(299998,1); %Matrix with the columns that we want to put nonzero elements
s=zeros(299998,1); %Matrix with the nonzero elements.
number=1;
previousNumberJ=0;
numberJ=0;
for k=1:299998 %Our index in i and j matrices
if mod((k-1),3)==0
s(k,1)=3;
else
s(k,1)=-1;
end
if k==1 || k==2
i(k,1)=1;
j(k,1)=k;
elseif k==299997 || k==299998
i(k,1)=100000;
j(k,1)=(k-200000)+2;
else
if mod(k,3)==0
number=number+1;
numberJ=previousNumberJ+1;
previousNumberJ=numberJ;
end
i(k,1)=number;
j(k,1)=numberJ;
numberJ=numberJ+1;
end
end
A=sparse(i,j,s); %Creating the sparse array
x=ex1_3(A,b);
答案 0 :(得分:1)
for循环在Matlab中运行得非常慢,也许你可能想尝试迭代的matrix form:
function x=gseidel(A,b)
max_temp=10^(-6); %Pass first iteration
x=b;
Q=tril(A);
r=b-A*x;
for i=1:100
dx=Q\r;
x=x+1*dx;
r=b-A*x;
% convergence check
if all(abs(r)<max_temp) && all(abs(dx)<max_temp), return; end
end
对于A
和b
,只需要16步即可收敛。
tril
提取A
的下三角部分,您也可以在构建矩阵时获得此Q
。由于Q
已经是三角矩阵,如果不允许使用Q*dx=r
函数,则可以非常轻松地solve等式\
。