用于LCP的预计Gauss-Seidel

时间:2012-07-30 10:32:34

标签: c# algorithm

我正在寻找用于解决linear complementarity problem的Projected Gauss-Seidel算法的C#实现。到目前为止,我已经在Bullet库中找到了用C ++编写的文件,但遗憾的是它已经过高度优化(因此很难将其翻译成C#)。

similar问题中,建议您查看numerical libraries for .NET。所有这些都只包含解算systems of linear equations的算法。

编辑:即使我找到了,但它似乎并不完整,所以问题仍然存在。

2 个答案:

答案 0 :(得分:9)

经过一周的搜索,我终于找到了this出版物(俄语,基于Kenny Erleben的作品)。在那里描述了一个投射的Gauss-Seidel算法,然后用SOR和终止条件进行扩展。所有这些都与C ++中的示例有关,我将其用于此基本C#实现:

public static double[] Solve (double[,] matrix, double[] right,
                              double relaxation, int iterations)
{
    // Validation omitted
    var x = right;
    double delta;

    // Gauss-Seidel with Successive OverRelaxation Solver
    for (int k = 0; k < iterations; ++k) {
        for (int i = 0; i < right.Length; ++i) {
            delta = 0.0f;

            for (int j = 0; j < i; ++j)
                delta += matrix [i, j] * x [j];
            for (int j = i + 1; j < right.Length; ++j)
                delta += matrix [i, j] * x [j];

            delta = (right [i] - delta) / matrix [i, i];
            x [i] += relaxation * (delta - x [i]);
        }
    }

    return x;
}

答案 1 :(得分:8)

你没有投影就实现了高斯赛德尔。对于预测的Gauss Seidel,您需要在下限和上限内投影(或钳制)解决方案:

public static double[] Solve (double[,] matrix, double[] right,
                              double relaxation, int iterations, 
                              double[] lo, double[] hi)
{
    // Validation omitted
    var x = right;
    double delta;

    // Gauss-Seidel with Successive OverRelaxation Solver
    for (int k = 0; k < iterations; ++k) {
        for (int i = 0; i < right.Length; ++i) {
            delta = 0.0f;

            for (int j = 0; j < i; ++j)
                delta += matrix [i, j] * x [j];
            for (int j = i + 1; j < right.Length; ++j)
                delta += matrix [i, j] * x [j];

            delta = (right [i] - delta) / matrix [i, i];
            x [i] += relaxation * (delta - x [i]);
    // Project the solution within the lower and higher limits
            if (x[i]<lo[i])
                x[i]=lo[i];
            if (x[i]>hi[i])
                x[i]=hi[i];
        }
    }
    return x;
}

这是一个小修改。这是一个要点,展示如何从Bullet物理库中提取A矩阵和b矢量,并使用投影Gauss Seidel解决它:https://gist.github.com/erwincoumans/6666160