我正在使用Python和opencv进行SURF特征检测。我在stackoverflow OpenCV 2.4.1 - computing SURF descriptors in Python上找到了这些例子,但不幸的是他们没有使用最新版本的opencv,即2.4.6.1。必须更改cv2.SURF.detect()命令,因为它现在只允许两个参数:
cv2.SURF.detect(image[, mask]) → keypoints¶
所以我可以获得关键点,但我如何获得描述符?没有找到解决方案。希望你能在这里帮助我。感谢
答案 0 :(得分:2)
根据Abid Rahman K在评论中发布的教程,我修改了这个示例代码OpenCV 2.4.1 - computing SURF descriptors in Python,因此它正在使用opencv 2.4.6.1
获取SURF关键点和描述符的功能已更改为:
cv2.SURF.detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) → keypoints, descriptors
所以这是链接的修改示例:
import cv2
import numpy
opencv_haystack =cv2.imread('haystack.jpg')
opencv_needle =cv2.imread('needle.jpg')
ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)
hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY)
# build feature detector and descriptor extractor
hessian_threshold = 5000
detector = cv2.SURF(hessian_threshold)
hkeypoints,hdescriptors = detector.detectAndCompute(hgrey,None)
nkeypoints,ndescriptors = detector.detectAndCompute(ngrey,None)
# extract vectors of size 64 from raw descriptors numpy arrays
rowsize = len(hdescriptors) / len(hkeypoints)
if rowsize > 1:
hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize))
nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize))
#print hrows.shape, nrows.shape
else:
hrows = numpy.array(hdescriptors, dtype = numpy.float32)
nrows = numpy.array(ndescriptors, dtype = numpy.float32)
rowsize = len(hrows[0])
# kNN training - learn mapping from hrow to hkeypoints index
samples = hrows
responses = numpy.arange(len(hkeypoints), dtype = numpy.float32)
#print len(samples), len(responses)
knn = cv2.KNearest()
knn.train(samples,responses)
# retrieve index and value through enumeration
for i, descriptor in enumerate(nrows):
descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize))
#print i, descriptor.shape, samples[0].shape
retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1)
res, dist = int(results[0][0]), dists[0][0]
#print res, dist
if dist < 0.1:
# draw matched keypoints in red color
color = (0, 0, 255)
else:
# draw unmatched in blue color
color = (255, 0, 0)
# draw matched key points on haystack image
x,y = hkeypoints[res].pt
center = (int(x),int(y))
cv2.circle(opencv_haystack,center,2,color,-1)
# draw matched key points on needle image
x,y = nkeypoints[i].pt
center = (int(x),int(y))
cv2.circle(opencv_needle,center,2,color,-1)
cv2.imshow('haystack',opencv_haystack)
cv2.imshow('needle',opencv_needle)
cv2.waitKey(0)
cv2.destroyAllWindows()