我是Python和opencv的新手。我设法获取描述符以及在图像上绘制关键点,但我需要知道如何存储它以供将来比较。
答案 0 :(得分:3)
您可以关注this link。我个人使用以下代码加载和保存SURF描述符
def read_features_from_file(filename):
""" Read feature properties and return in matrix form. """
if os.path.getsize(filename) <= 0:
return np.array([]), np.array([])
f = np.load(filename)
if f.size == 0:
return np.array([]), np.array([])
f = np.atleast_2d(f)
return f[:,:7], f[:,7:] # feature locations, descriptors
def write_features_to_file(filename, locs, desc):
np.save(filename, np.hstack((locs,desc)))
[编辑]:添加更多代码和用法示例:
def pack_keypoint(keypoints, descriptors):
kpts = np.array([[kp.pt[0], kp.pt[1], kp.size,
kp.angle, kp.response, kp.octave,
kp.class_id]
for kp in keypoints])
desc = np.array(descriptors)
return kpts, desc
def unpack_keypoint(array):
try:
kpts = array[:,:7]
desc = array[:,7:]
keypoints = [cv2.KeyPoint(x, y, _size, _angle, _response, int(_octave), int(_class_id))
for x, y, _size, _angle, _response, _octave, _class_id in list(kpts)]
return keypoints, np.array(desc)
except(IndexError):
return np.array([]), np.array([])
def process_image(imagename, resultname):
img = cv2.imread(imagename, 0)
k = surf.detect(img, None)
if len(k) > 0:
k, des = surf.compute(img, k)
else:
des = []
k, des = pack_keypoint(k, des) #
write_features_to_file(resultname, k, des)
答案 1 :(得分:0)
这对我有用:
# Initiate SURF detector
surf = cv2.xfeatures2d.SURF_create()
surf.setHessianThreshold(10000)
img1 = cv2.imread("images/85_hires.png", 4)
kp1, des1 = surf.detectAndCompute(img1, None)
img2 = cv2.imread("images/85_hires.png", 4)
kp2, des2 = surf.detectAndCompute(img2, None)
np.savetxt("test.txt", des2)
new = np.loadtxt("test.txt").astype('float32')
print(getImageScore(des1, des2))
print(getImageScore(des1, new))