我想针对两张火车图像检查一个场景图像。 为此,我检测了两个训练图像的特征和计算描述符。 在检测,计算和匹配场景图像之前,我将删除train1和train2的所有匹配项。因为这些匹配不利于场景图像与train1和train2的匹配。
因此,我将train1与train2匹配,并获得与trainIdx和queryIdx匹配的向量。但是如何在关键点矢量和train1和train2的描述符矩阵中删除这些匹配?
祝你好运, DWI
答案 0 :(得分:2)
我会像下面这样做:
std::vector<cv::KeyPoint> keypoints[2];
cv::Mat descriptor[2];
std::vector< cv::DMatch > matches;
/*
Write code to generate the keypoints, descriptors and matches here...
keypoint[0] -> Train Image 1 keypoints
keypoint[1] -> Train Image 2 keypoints
descriptor[0] -> Train Image 1 descriptors
descriptor[1] -> Train Image 2 descriptors
matches -> matched between train image 1 and 2
*/
// Logic to keep unmatched keypoints and corresponding descriptors
for (int idx = 0; idx < 2; idx++) {
std::vector<bool> isMatched(keypoints[idx].size(), false);
// Mark all matched keypoint as true
for (int i = 0; i < matches.size(); i++) {
if (idx == 0) {
isMatched[matches[i].queryIdx] = true;
}
else {
isMatched[matches[i].trainIdx] = true;
}
}
std::vector<cv::KeyPoint>::const_iterator itr = keypoints[idx].begin();
// New descriptor length will be old descriptor length minus matched keypoints size
int descriptor_length = keypoints[idx].size() - matches.size();
// Create temporary descriptor of new descriptor length
cv::Mat tempDescriptor(descriptor_length, descriptor[idx].cols, descriptor[idx].depth());
int count = 0;
for (int i = 0; i < isMatched.size(); i++) {
// Remove matched keypoints
if (isMatched[i] == true) {
itr = keypoints[idx].erase(itr);
}
else {
descriptor[idx].row(i).copyTo(tempDescriptor.row(count));
itr++;
count++;
}
}
descriptor[idx].release();
descriptor[idx] = tempDescriptor.clone();
}
我希望这会有所帮助。
答案 1 :(得分:0)
好的,就像Micka建议的那样,我迭代所有的关键点和描述符,并在新的向量/矩阵中添加除了匹配之外的所有关键点和描述符。 没有必要将它们标记为不必要。