我尝试检查次正规数。以下是我的代码。它有效,但我没有看到Min正常数和次正规数之间的差异。 为什么?
/*
isnormal example
ISO C99
http://www.cplusplus.com/reference/cmath/isnormal/
http://www.gnu.org/software/libc/manual/html_node/Floating-Point-Classes.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html
compile with:
gcc -std=c99 -lm s.c
run :
./a.out
*/
#include <stdio.h> /* printf */
#include <math.h> /* isnormal, fpclassify */
int TestNumber(double x)
{
int f; // flag
f= isnormal(x);
if (f)
printf ("number %f is normal \r",x);
else printf ("number %.1000f is not normal \n",x);
return f;
}
//----------------------------
int main()
{
double d ;
double MinNormal;
int f;
d = 1.0 ; // normal
f = TestNumber(d);
do
{
d /=2.0;
MinNormal=d;
f = TestNumber(d);
}
while (f);
printf ("number %.1000f is minimal normal \n",MinNormal);
printf ("number %.1000e is not normal \n",d);
printf ("number %.1000e is minimal normal \n",MinNormal);
return 0;
}
这是我的输出:
gcc -std=c99 -lm s.c
a@acer:~/cnie/numerical/subnormal/s1$ time ./a.out
number 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111253692925360069154511635866620203210960799023116591527666370844360221740695909792714157950625551028203366986551790550257621708077673005442800619268885941056538899676600116523980507372129181803596078252347125186710418762540332530832907947436024558998429581982425031795438505915243739989044387687497472579022580252545769992829123540932255676896790249605799054288302599621667605717619507439784980479564444580149632075553173315669683173879325651468588102366281589074283217543606141431882102242340570380695573853140084492662205501208072371080928358307527007714254235837645095158066138944836485368656166704349449158753391942346304638698898642932982747054568454770306823378435119933915764534049231 is not normal
number 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111253692925360069154511635866620203210960799023116591527666370844360221740695909792714157950625551028203366986551790550257621708077673005442800619268885941056538899676600116523980507372129181803596078252347125186710418762540332530832907947436024558998429581982425031795438505915243739989044387687497472579022580252545769992829123540932255676896790249605799054288302599621667605717619507439784980479564444580149632075553173315669683173879325651468588102366281589074283217543606141431882102242340570380695573853140084492662205501208072371080928358307527007714254235837645095158066138944836485368656166704349449158753391942346304638698898642932982747054568454770306823378435119933915764534049231 is minimal normal
number 1.1125369292536006915451163586662020321096079902311659152766637084436022174069590979271415795062555102820336698655179055025762170807767300544280061926888594105653889967660011652398050737212918180359607825234712518671041876254033253083290794743602455899842958198242503179543850591524373998904438768749747257902258025254576999282912354093225567689679024960579905428830259962166760571761950743978498047956444458014963207555317331566968317387932565146858810236628158907428321754360614143188210224234057038069557385314008449266220550120807237108092835830752700771425423583764509515806613894483648536865616670434944915875339194234630463869889864293298274705456845477030682337843511993391576453404923086054623126983642578125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-308 is not normal
number 1.1125369292536006915451163586662020321096079902311659152766637084436022174069590979271415795062555102820336698655179055025762170807767300544280061926888594105653889967660011652398050737212918180359607825234712518671041876254033253083290794743602455899842958198242503179543850591524373998904438768749747257902258025254576999282912354093225567689679024960579905428830259962166760571761950743978498047956444458014963207555317331566968317387932565146858810236628158907428321754360614143188210224234057038069557385314008449266220550120807237108092835830752700771425423583764509515806613894483648536865616670434944915875339194234630463869889864293298274705456845477030682337843511993391576453404923086054623126983642578125000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-308 is minimal normal
答案 0 :(得分:3)
循环的编写方式始终以d
和MinNoemal
设置为相同的值结束。您应该在更改前将MinNormal
的分配移至d
,以便它记住上一次迭代中d
的值。