我目前通过否定所有边权重和运行Bellman-Ford算法找到有向无环正加权图中最长的路径。这很有效。
但是,我想打印使用哪些节点/边的迹线。我怎么能这样做?
程序将节点数,源,目标和边权重视为输入。输入暂停-1 -1 -1
。我的代码如下:
import java.util.Arrays;
import java.util.Vector;
import java.util.Scanner;
public class BellmanFord {
public static int INF = Integer.MAX_VALUE;
// this class represents an edge between two nodes
static class Edge {
int source; // source node
int destination; // destination node
int weight; // weight of the edge
public Edge() {}; // default constructor
public Edge(int s, int d, int w) { source = s; destination = d; weight = (w*(-1)); }
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int inputgood = 1;
int tail;
int head;
int weight;
int count = -1;
Vector<Edge> edges = new Vector<Edge>(); // data structure to hold graph
int nnodes = input.nextInt();
while (inputgood == 1) {
tail = input.nextInt();
head = input.nextInt();
weight = input.nextInt();
if (tail != -1) {
edges.add(new Edge(tail, head, weight));
count++;
}
if (tail == -1)
inputgood = 0;
}
int start = edges.get(0).source;
bellmanFord(edges, nnodes, start);
}
public static void bellmanFord(Vector<Edge> edges, int nnodes, int source) {
// the 'distance' array contains the distances from the main source to all other nodes
int[] distance = new int[nnodes];
// at the start - all distances are initiated to infinity
Arrays.fill(distance, INF);
// the distance from the main source to itself is 0
distance[source] = 0;
// in the next loop we run the relaxation 'nnodes' times to ensure that
// we have found new distances for ALL nodes
for (int i = 0; i < nnodes; ++i)
// relax every edge in 'edges'
for (int j = 0; j < edges.size(); ++j) {
// analyze the current edge (SOURCE == edges.get(j).source, DESTINATION == edges.get(j).destination):
// if the distance to the SOURCE node is equal to INF then there's no shorter path from our main source to DESTINATION through SOURCE
if (distance[edges.get(j).source] == INF) continue;
// newDistance represents the distance from our main source to DESTINATION through SOURCE (i.e. using current edge - 'edges.get(j)')
int newDistance = distance[edges.get(j).source] + edges.get(j).weight;
// if the newDistance is less than previous longest distance from our main source to DESTINATION
// then record that new longest distance from the main source to DESTINATION
if (newDistance < distance[edges.get(j).destination])
distance[edges.get(j).destination] = newDistance;
}
// next loop analyzes the graph for cycles
for (int i = 0; i < edges.size(); ++i)
// 'if (distance[edges.get(i).source] != INF)' means:
// "
// if the distance from the main source node to the DESTINATION node is equal to infinity then there's no path between them
// "
// 'if (distance[edges.get(i).destination] > distance[edges.get(i).source] + edges.get(i).weight)' says that there's a negative edge weight cycle in the graph
if (distance[edges.get(i).source] != INF && distance[edges.get(i).destination] > distance[edges.get(i).source] + edges.get(i).weight) {
System.out.println("Cycles detected!");
return;
}
// this loop outputs the distances from the main source node to all other nodes of the graph
for (int i = 0; i < distance.length; ++i)
if (distance[i] == INF)
System.out.println("There's no path between " + source + " and " + i);
else
System.out.println("The Longest distance between nodes " + source + " and " + i + " is " + distance[i]);
}
}
答案 0 :(得分:0)
您需要稍微修改您在Bellman Ford实施中的操作:
...
int[] lastNode = new int[nnodes];
lastNode[source] = source;
for (int i = 0; i < nnodes; ++i)
for (int j = 0; j < edges.size(); ++j) {
if (distance[edges.get(j).source] == INF) continue;
int newDistance = distance[edges.get(j).source] + edges.get(j).weight;
if (newDistance < distance[edges.get(j).destination])
{
distance[edges.get(j).destination] = newDistance;
lastNode[edges.get(j).destination] = edges.get(j).source;
}
}
然后打印个别路径:
static void printPath(int source, int end, int[] lastNodes)
{
if(source!=end)
printPath(source, lastNodes[end], lastNodes);
System.out.print(end+" ");
}
从源节点到结束节点按顺序打印路径。
答案 1 :(得分:0)
图算法的常见解决方案是维护parent[edge] -> edge
映射。对于边e
,当我们以某种方式创建最佳路径时,parent[e]
的值是我们从中移动到e
的节点。
通常以更新算法中的索引的方式更新数组,以查找数组中的最大元素,即当您比较候选路径的适合度与当前路径的适合度时,在if
条件下。
在你的情况下,就在这里:
if (newDistance < distance[edges.get(j).destination]) {
distance[edges.get(j).destination] = newDistance;
parent[edges.get(j).destination] = edges.get(j).source;
}
在映射parent
映射后,您可以获取目标节点并将其遍历,递归构建数组[dest, parent[dest], parent[parent[dest]], ... source
。