我有一个奇怪的问题。在here之后(重新:复制),我一直在尝试为2的幂大小的数组实现Cooley–Tukey FFT算法,但是从这个实现返回的答案是共轭的真实答案。
int fft_pow2(int dir,int m,float complex *a)
{
long nn,i,i1,j,k,i2,l,l1,l2;
float c1,c2,tx,ty,t1,t2,u1,u2,z;
float complex t;
/* Calculate the number of points */
nn = 1;
for (i=0;i<m;i++)
nn *= 2;
/* Do the bit reversal */
i2 = nn >> 1;
j = 0;
for (i=0;i<nn-1;i++) {
if (i < j) {
t = a[i];
a[i] = a[j];
a[j] = t;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<nn;i+=l2) {
i1 = i + l1;
t = u1 * crealf(a[i1]) - u2 * cimagf(a[i1])
+ I * (u1 * cimagf(a[i1]) + u2 * crealf(a[i1]));
a[i1] = a[i] - t;
a[i] += t;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i=0;i<nn;i++) {
a[i] /= (float)nn;
}
}
return 1;
}
int main(int argc, char **argv) {
float complex arr[4] = { 1.0, 2.0, 3.0, 4.0 };
fft_pow2(0, log2(n), arr);
for (int i = 0; i < n; i++) {
printf("%f %f\n", crealf(arr[i]), cimagf(arr[i]));
}
}
结果:
10.000000 0.000000
-2.000000 -2.000000
-2.000000 0.000000
-2.000000 2.000000
而真正的答案是共轭。
有什么想法吗?
答案 0 :(得分:2)
FFT通常定义为H k = sum(e -2•π•i•j•k / N •h j ,0 您显示的代码是针对具有负号的定义编写的,并且还会对其进行编写,以使第一个参数 因此, 这就是你获得的结果。dir
对于正向变换为1,对于反向变换则为其他参数。由于有关正向变换的缩放的注释,我们可以确定预期的方向:如果dir
为1,它会进行缩放。main
中的代码将fft_pow2
调用dir
为0,它正在请求反向转换。您的代码使用带有负号的FFT定义执行了反向变换。带负号的变换的反向是具有正号的变换。对于[1,2,3,4],结果是: