我对Python很陌生,我开始试图在这里实现Dijkstra的算法:http://thomas.pelletier.im/2010/02/dijkstras-algorithm-python-implementation/。问题是我的矩阵看起来像这样:
{
2845: {27026: {'weight': 0.05950338}, 83860: {'weight': 0.013386887}},
12422: {27023: {'weight': 0.0787193}, 27026: {'weight': 0.041424256}, 59721: {'weight': 0.11553069}},
27022: {27025: {'weight': 0.1283993}, 83860: {'weight': 0.11746721}},
27023: {12422: {'weight': 0.0787193}, 27025: {'weight': 0.22683257}},
27025: {27022: {'weight': 0.1283993}, 27023: {'weight': 0.22683257}, 27026: {'weight': 0.20290035}},
27026: {2845: {'weight': 0.05950338}, 12422: {'weight': 0.041424256}, 27025: {'weight': 0.20290035}},
59721: {12422: {'weight': 0.11553069}},
83860: {2845: {'weight': 0.013386887}, 27022: {'weight': 0.11746721}}
}
这仍然适用于上述算法,还是我必须稍作调整?如果是,那该怎么办?
由于
编辑:
这是我实施的算法:
def dijkstra(self, graph, start, end):
D = {} # Final distances dict
P = {} # Predecessor dict
for node in graph.keys():
D[node] = -1 # Vertices are unreachable
P[node] = ""
D[start] = 0 # The start vertex needs no move
unseen_nodes = graph.keys() # All nodes are unseen
while len(unseen_nodes) > 0:
shortest = None
node = ''
for temp_node in unseen_nodes:
if shortest == None:
shortest = D[temp_node]
node = temp_node
elif (D[temp_node] < shortest):
shortest = D[temp_node]
node = temp_node
unseen_nodes.remove(node)
for child_node, child_value in graph[node].items():
if D[child_node] < D[node] + child_value:
D[child_node] = D[node] + child_value
P[child_node] = node
path = []
node = end
while not (node == start):
if path.count(node) == 0:
path.insert(0, node) # Insert the predecessor of the current node
node = P[node] # The current node becomes its predecessor
else:
break
path.insert(0, start) # Finally, insert the start vertex
return path
我正在使用的矩阵如上所述,算法所需的矩阵是:
... graph = {
... 'A': {'B': 10, 'D': 4, 'F': 10},
... 'B': {'E': 5, 'J': 10, 'I': 17},
... 'C': {'A': 4, 'D': 10, 'E': 16},
... 'D': {'F': 12, 'G': 21},
... 'E': {'G': 4},
... 'F': {'H': 3},
... 'G': {'J': 3},
... 'H': {'G': 3, 'J': 5},
... 'I': {},
... 'J': {'I': 8},
... }
答案 0 :(得分:0)
我认为这应该可行,但这取决于您的代码。如果您想要更完整的答案,请发布其余代码。
使用dicts可能比制作2D数组更令人头疼。如果你真的想使用dicts,我建议使用default dict。
答案 1 :(得分:0)
在给定的源代码示例中,权重只是一个整数,而不是一个dict。由于你的图表有一个带有“权重”键的字典,你必须根据它改变代码。
这是您的代码的正确版本:
def dijkstra(self, graph, start, end):
D = {} # Final distances dict
P = {} # Predecessor dict
for node in graph.keys():
D[node] = -1 # Vertices are unreachable
P[node] = ""
D[start] = 0 # The start vertex needs no move
unseen_nodes = graph.keys() # All nodes are unseen
while len(unseen_nodes) > 0:
shortest = None
node = ''
for temp_node in unseen_nodes:
if shortest == None:
shortest = D[temp_node]
node = temp_node
elif (D[temp_node] < shortest):
shortest = D[temp_node]
node = temp_node
unseen_nodes.remove(node)
for child_node, child_value in graph[node].items():
if D[child_node] < D[node] + child_value['weight']: # I changed the code here
D[child_node] = D[node] + child_value['weight'] # I changed the code here
P[child_node] = node
path = []
node = end
while not (node == start):
if path.count(node) == 0:
path.insert(0, node) # Insert the predecessor of the current node
node = P[node] # The current node becomes its predecessor
else:
break
path.insert(0, start) # Finally, insert the start vertex
return path