使用R,从省略上三角形部分的文件中读取对称矩阵的最佳方法是什么。例如,
1.000
.505 1.000
.569 .422 1.000
.602 .467 .926 1.000
.621 .482 .877 .874 1.000
.603 .450 .878 .894 .937 1.000
我尝试了read.table
,但没有成功。
答案 0 :(得分:12)
这是一个read.table and loopless和* apply-less解决方案:
txt <- "1.000
.505 1.000
.569 .422 1.000
.602 .467 .926 1.000
.621 .482 .877 .874 1.000
.603 .450 .878 .894 .937 1.000"
# Could use clipboard or read this from a file as well.
mat <- data.matrix( read.table(text=txt, fill=TRUE, col.names=paste("V", 1:6)) )
mat[upper.tri(mat)] <- t(mat)[upper.tri(mat)]
> mat
V1 V2 V3 V4 V5 V6
[1,] 1.000 0.505 0.569 0.602 0.621 0.603
[2,] 0.505 1.000 0.422 0.467 0.482 0.450
[3,] 0.569 0.422 1.000 0.926 0.877 0.878
[4,] 0.602 0.467 0.926 1.000 0.874 0.894
[5,] 0.621 0.482 0.877 0.874 1.000 0.937
[6,] 0.603 0.450 0.878 0.894 0.937 1.000
答案 1 :(得分:3)
我复制了您的文字,然后使用tt <- file('clipboard','rt')
将其导入。对于标准文件:
tt <- file("yourfile.txt",'rt')
a <- readLines(tt)
b <- strsplit(a," ") #insert delimiter here; can use regex
b <- lapply(b,function(x) {
x <- as.numeric(x)
length(x) <- max(unlist(lapply(b,length)));
return(x)
})
b <- do.call(rbind,b)
b[is.na(b)] <- 0
#kinda kludgy way to get the symmetric matrix
b <- b + t(b) - diag(b[1,1],nrow=dim(b)[1],ncol=dim(b)[2]
答案 2 :(得分:1)
我发帖但我更喜欢Blue Magister的方法。但也许这里有一些东西可供使用。
mat <- readLines(n=6)
1.000
.505 1.000
.569 .422 1.000
.602 .467 .926 1.000
.621 .482 .877 .874 1.000
.603 .450 .878 .894 .937 1.000
nmat <- lapply(mat, function(x) unlist(strsplit(x, "\\s+")))
lens <- sapply(nmat, length)
dlen <- max(lens) -lens
bmat <- lapply(seq_along(nmat), function(i) {
as.numeric(c(nmat[[i]], rep(NA, dlen[i])))
})
mat <- do.call(rbind, bmat)
mat[upper.tri(mat)] <- t(mat)[upper.tri(mat)]
mat
答案 3 :(得分:1)
如果矩阵的尺寸未知,这种方法也适用。
# read file as a vector
mat <- scan("file.txt", what = numeric())
# calculate the number of columns (and rows)
ncol <- (sqrt(8 * length(mat) + 1) - 1) / 2
# index of the diagonal values
diag_idx <- cumsum(seq.int(ncol))
# generate split index
split_idx <- cummax(sequence(seq.int(ncol)))
split_idx[diag_idx] <- split_idx[diag_idx] - 1
# split vector into list of rows
splitted_rows <- split(mat, f = split_idx)
# generate matrix
mat_full <- suppressWarnings(do.call(rbind, splitted_rows))
mat_full[upper.tri(mat_full)] <- t(mat_full)[upper.tri(mat_full)]
[,1] [,2] [,3] [,4] [,5] [,6]
0 1.000 0.505 0.569 0.602 0.621 0.603
1 0.505 1.000 0.422 0.467 0.482 0.450
2 0.569 0.422 1.000 0.926 0.877 0.878
3 0.602 0.467 0.926 1.000 0.874 0.894
4 0.621 0.482 0.877 0.874 1.000 0.937
5 0.603 0.450 0.878 0.894 0.937 1.000