我正在阅读算法简介并尝试完成本书中的练习。
在练习4.1-3中
4.1-3 在您自己的计算机上实现最大子阵列问题的强制算法和递归算法。问题大小n0给出了交叉 递归算法胜过强力算法的点?然后, 更改递归算法的基本情况以使用强力算法 每当问题大小小于n0时。这会改变交叉点吗?
我根据本书的伪代码编写了两种算法。但是,我的代码肯定有问题,因为第二个,设计为Theta(n * lgn)并且应该运行得更快,总是比第一个Theta(n ** 2)运行得慢。我的代码如下所示。
def find_maximum_subarray_bf(a): #bf for brute force p1 = 0 l = 0 # l for left r = 0 # r for right max_sum = 0 for p1 in range(len(a)-1): sub_sum = 0 for p2 in range(p1, len(a)): sub_sum += a[p2] if sub_sum > max_sum: max_sum = sub_sum l = p1 r = p2 return l, r, max_sum def find_maximum_subarray_dc(a): #dc for divide and conquer # subfunction # given an arrary and three indics which can split the array into a[l:m] # and a[m+1:r], find out a subarray a[i:j] where l \leq i \less m \less j \leq r". # according to the definition above, the target subarray must # be combined by two subarray, a[i:m] and a[m+1:j] # Growing Rate: theta(n) def find_crossing_max(a, l, r, m): # left side # ls_r and ls_l indicate the right and left bound of the left subarray. # l_max_sum indicates the max sum of the left subarray # sub_sum indicates the sum of the current computing subarray ls_l = 0 ls_r = m-1 l_max_sum = None sub_sum = 0 for j in range(m+1)[::-1]: # adding elements from right to left sub_sum += a[j] if sub_sum > l_max_sum: l_max_sum = sub_sum ls_l = j # right side # rs_r and rs_l indicate the right and left bound of the left subarray. # r_max_sum indicates the max sum of the left subarray # sub_sum indicates the sum of the current computing subarray rs_l = m+1 rs_r = 0 r_max_sum = None sub_sum = 0 for j in range(m+1,len(a)): sub_sum += a[j] if sub_sum > r_max_sum: r_max_sum = sub_sum rs_r = j #combine return (ls_l, rs_r, l_max_sum+r_max_sum) # subfunction # Growing Rate: should be theta(nlgn), but there is something wrong def recursion(a,l,r): # T(n) if r == l: return (l,r,a[l]) else: m = (l+r)//2 # theta(1) left = recursion(a,l,m) # T(n/2) right = recursion(a,m+1,r) # T(n/2) crossing = find_crossing_max(a,l,r,m) # theta(n) if left[2]>=right[2] and left[2]>=crossing[2]: return left elif right[2]>=left[2] and right[2]>=crossing[2]: return right else: return crossing #back to master function l = 0 r = len(a)-1 return recursion(a,l,r) if __name__ == "__main__": from time import time a = [100,-10,1,2,-1,4,-6,2,5] a *= 2**10 time0 = time() find_maximum_subarray_bf(a) time1 = time() find_maximum_subarray_dc(a) time2 = time() print "function 1:", time1-time0 print "function 2:", time2-time1 print "ratio:", (time1-time0)/(time2-time1)
答案 0 :(得分:5)
首先,蛮力中的一个错误:
for p1 in range(len(a)-1):
应该是range(len(a))
[或xrange
],因为它找不到[-12,10]
的最大子数组。
现在,递归:
def find_crossing_max(a, l, r, m):
# left side
# ls_r and ls_l indicate the right and left bound of the left subarray.
# l_max_sum indicates the max sum of the left subarray
# sub_sum indicates the sum of the current computing subarray
ls_l = 0
ls_r = m-1
l_max_sum = None
sub_sum = 0
for j in range(m+1)[::-1]: # adding elements from right to left
您正在检查所有索引为0,但您应该只检查l
的索引。不要构建range
列表并将其反转,而是使用xrange(m,l-1,-1)
sub_sum += a[j]
if sub_sum > l_max_sum:
l_max_sum = sub_sum
ls_l = j
对于右边的总和,模拟成立,你应该只检查指数到r
,所以xrange(m+1,r+1)
。
此外,您的总和的初始值分别为。最大子阵列的索引对于左侧部分是可疑的,而对于右侧则是错误的。
对于左侧部分,我们从空的开头开始,但必须包含a[m]
。这可以通过最初设置l_max_sum = None
或设置l_max_sum = a[m]
并让j
省略索引m
来完成。无论哪种方式,ls_l
的初始值不应为0
,而对于ls_r
,它不应为m-1
。如果ls_r
的初始值为m
,则ls_l
必须为m+1
,l_max_sum
应为None
。m
如果l_max_sum
以a[m]
开头。
对于正确的部分,r_max_sum
必须从0开始,rs_r
最好以m
开头(虽然这不是很重要,但它只会给你错误的索引)。如果右边的总和都不是非负的,那么正确的总和应该是0
而不是最大的负数。
在recursion
中,我们在
left = recursion(a,l,m) # T(n/2)
包括a[m]
在内的总和已在find_crossing_max
中得到处理或主要处理,因此可能
left = recursion(a,l,m-1)
但是人们还必须在r < l
中处理recursion
的可能性,并且重复很小,所以我会放弃。
由于您始终遍历find_crossing_max
中的整个列表,并且称为O(n)
次,因此您的分而治之实施实际上也是O(n²)
。
如果find_crossing_max
中选中的范围仅限于[l,r]
,则您对2^k
n/2^k
,{{{{{{ 1}},总费用为0 <= k <= log_2 n
。
通过这些更改(以及一些随机数组生成),
O(n*log n)
我们得到了我们应该期待的东西:
def find_maximum_subarray_bf(a): #bf for brute force
p1 = 0
l = 0 # l for left
r = 0 # r for right
max_sum = 0
for p1 in xrange(len(a)):
sub_sum = 0
for p2 in xrange(p1, len(a)):
sub_sum += a[p2]
if sub_sum > max_sum:
max_sum = sub_sum
l = p1
r = p2
return l, r, max_sum
def find_maximum_subarray_dc(a): #dc for divide and conquer
# subfunction
# given an arrary and three indices which can split the array into a[l:m]
# and a[m+1:r], find out a subarray a[i:j] where l \leq i \less m \less j \leq r".
# according to the definition above, the target subarray must
# be combined by two subarray, a[i:m] and a[m+1:j]
# Growing Rate: theta(n)
def find_crossing_max(a, l, r, m):
# left side
# ls_r and ls_l indicate the right and left bound of the left subarray.
# l_max_sum indicates the max sum of the left subarray
# sub_sum indicates the sum of the current computing subarray
ls_l = m+1
ls_r = m
l_max_sum = None
sub_sum = 0
for j in xrange(m,l-1,-1): # adding elements from right to left
sub_sum += a[j]
if sub_sum > l_max_sum:
l_max_sum = sub_sum
ls_l = j
# right side
# rs_r and rs_l indicate the right and left bound of the left subarray.
# r_max_sum indicates the max sum of the left subarray
# sub_sum indicates the sum of the current computing subarray
rs_l = m+1
rs_r = m
r_max_sum = 0
sub_sum = 0
for j in range(m+1,r+1):
sub_sum += a[j]
if sub_sum > r_max_sum:
r_max_sum = sub_sum
rs_r = j
#combine
return (ls_l, rs_r, l_max_sum+r_max_sum)
# subfunction
# Growing Rate: theta(nlgn)
def recursion(a,l,r): # T(n)
if r == l:
return (l,r,a[l])
else:
m = (l+r)//2 # theta(1)
left = recursion(a,l,m) # T(n/2)
right = recursion(a,m+1,r) # T(n/2)
crossing = find_crossing_max(a,l,r,m) # theta(r-l+1)
if left[2]>=right[2] and left[2]>=crossing[2]:
return left
elif right[2]>=left[2] and right[2]>=crossing[2]:
return right
else:
return crossing
#back to master function
l = 0
r = len(a)-1
return recursion(a,l,r)
if __name__ == "__main__":
from time import time
from sys import argv
from random import randint
alen = 100
if len(argv) > 1:
alen = int(argv[1])
a = [randint(-100,100) for i in xrange(alen)]
time0 = time()
print find_maximum_subarray_bf(a)
time1 = time()
print find_maximum_subarray_dc(a)
time2 = time()
print "function 1:", time1-time0
print "function 2:", time2-time1
print "ratio:", (time1-time0)/(time2-time1)