来自几个参考文献(即http://en.wikipedia.org/wiki/Rotation_matrix“轴和角度的旋转矩阵”,以及Foley等人的“计算机图形学 - 原理和实践”中的练习5.15,C中的第2版),我看到旋转矩阵的定义(在Octave下面实现),它围绕指定的向量旋转指定的角度。虽然我以前使用它,但我现在看到旋转问题似乎与方向有关。该问题在以下Octave代码中重新创建
最后尝试通过角度θ旋转矢量旋转来将src旋转到dst。
% This test fails: rotated unit vector is not at expected location and is no longer normalized.
s = [-0.49647; -0.82397; -0.27311]
d = [ 0.43726; -0.85770; -0.27048]
test_rotation(s, d, 1);
% Determine rotation matrix that rotates the source and normal vectors to the x and z axes, respectively.
normal = cross(s, d);
normal /= norm(normal);
R = zeros(3,3);
R(1,:) = s;
R(2,:) = cross(normal, s);
R(3,:) = normal;
R
% After rotation of the source and destination vectors, this test passes.
s2 = R * s
d2 = R * d
test_rotation(s2, d2, 2);
function test_rotation(src, dst, iFig)
norm_src = norm(src)
norm_dst = norm(dst)
% Determine rotation axis (i.e., normal to two vectors) and rotation angle.
pivot = cross(src, dst);
theta = asin(norm(pivot))
theta_degrees = theta * 180 / pi
pivot /= norm(pivot)
% Initialize matrix to rotate by an angle theta about pivot vector.
ct = cos(theta);
st = sin(theta);
omct = 1 - ct;
M(1,1) = ct - pivot(1)*pivot(1)*omct;
M(1,2) = pivot(1)*pivot(2)*omct - pivot(3)*st;
M(1,3) = pivot(1)*pivot(3)*omct + pivot(2)*st;
M(2,1) = pivot(1)*pivot(2)*omct + pivot(3)*st;
M(2,2) = ct - pivot(2)*pivot(2)*omct;
M(2,3) = pivot(2)*pivot(3)*omct - pivot(1)*st;
M(3,1) = pivot(1)*pivot(3)*omct - pivot(2)*st;
M(3,2) = pivot(2)*pivot(3)*omct + pivot(1)*st;
M(3,3) = ct - pivot(3)*pivot(3)*omct;
% Rotate src about pivot by angle theta ... and check the result.
dst2 = M * src
dot_dst_dst2 = dot(dst, dst2)
if (dot_dst_dst2 >= 0.99999)
"success"
else
"FAIL"
end
% Draw the vectors: green is source, red is destination, blue is normal.
figure(iFig);
x(1) = y(1) = z(1) = 0;
ubounds = [-1.25 1.25 -1.25 1.25 -1.25 1.25];
x(2)=src(1); y(2)=src(2); z(2)=src(3);
plot3(x,y,z,'g-o');
hold on
x(2)=dst(1); y(2)=dst(2); z(2)=dst(3);
plot3(x,y,z,'r-o');
x(2)=pivot(1); y(2)=pivot(2); z(2)=pivot(3);
plot3(x,y,z,'b-o');
x(2)=dst2(1); y(2)=dst2(2); z(2)=dst2(3);
plot3(x,y,z,'k.o');
axis(ubounds, 'square');
view(45,45);
xlabel("xd");
ylabel("yd");
zlabel("zd");
hold off
end
以下是结果数字。图1显示了一个不起作用的方向。图2显示了一个有效的方向:相同的src和dst向量,但旋转到第一个象限。
我期待src矢量总是旋转到dst矢量上,如图2所示,覆盖红色圆圈的黑色圆圈,适用于所有矢量方向。然而,图1示出了src矢量不旋转到dst矢量上的方向(即,黑色圆圈不在红色圆圈的顶部,并且在单位球体上不均匀)。
对于它的价值,定义旋转矩阵的参考文献没有提到方向限制,我得出(在几个小时和几页中)旋转矩阵方程,并没有发现任何方向限制。我希望问题是我的实现错误,但我在我的任何一个实现中都找不到它:C和Octave。在实现此旋转矩阵时,您是否遇到过方向限制?如果是这样,你是如何解决它们的?如果没有必要,我宁愿避免额外翻译到第一象限。
谢谢,
格雷格
答案 0 :(得分:3)
似乎已经逃脱了两个减号:
M(1,1) = ct - P(1)*P(1)*omct;
M(1,2) = P(1)*P(2)*omct - P(3)*st;
M(1,3) = P(1)*P(3)*omct + P(2)*st;
M(2,1) = P(1)*P(2)*omct + P(3)*st;
M(2,2) = ct + P(2)*P(2)*omct; %% ERR HERE; THIS IS THE CORRECT SIGN
M(2,3) = P(2)*P(3)*omct - P(1)*st;
M(3,1) = P(1)*P(3)*omct - P(2)*st;
M(3,2) = P(2)*P(3)*omct + P(1)*st;
M(3,3) = ct + P(3)*P(3)*omct; %% ERR HERE; THIS IS THE CORRECT SIGN
这是一个更紧凑,更快速且基于Rodrigues' rotation formula的版本:
function test
% first test: pass
s = [-0.49647; -0.82397; -0.27311];
d = [ 0.43726; -0.85770; -0.27048]
d2 = axis_angle_rotation(s, d)
% Determine rotation matrix that rotates the source and normal vectors to the x and z axes, respectively.
normal = cross(s, d);
normal = normal/norm(normal);
R(1,:) = s;
R(2,:) = cross(normal, s);
R(3,:) = normal;
% Second test: pass
s2 = R * s;
d2 = R * d
d3 = axis_angle_rotation(s2, d2)
end
function vec = axis_angle_rotation(vec, dst)
% These following commands are just here for the function to act
% the same as your original function. Eventually, the function is
% probably best defined as
%
% vec = axis_angle_rotation(vec, axs, angle)
%
% or even
%
% vec = axis_angle_rotation(vec, axs)
%
% where the length of axs defines the angle.
%
axs = cross(vec, dst);
theta = asin(norm(axs));
% some preparations
aa = axs.'*axs;
ra = vec.'*axs;
% location of circle centers
c = ra.*axs./aa;
% first coordinate axis on the circle's plane
u = vec-c;
% second coordinate axis on the circle's plane
v = [axs(2)*vec(3)-axs(3)*vec(2)
axs(3)*vec(1)-axs(1)*vec(3)
axs(1)*vec(2)-axs(2)*vec(1)]./sqrt(aa);
% the output vector
vec = c + u*cos(theta) + v*sin(theta);
end