如何找出对应于矩阵特定特征值的特征向量?

时间:2012-08-14 13:56:09

标签: python numpy scipy eigenvector eigenvalue

如何找出与特定特征值对应的特征向量?

我有一个随机矩阵(P),其中一个特征值是1.我需要找到对应于特征值1的特征向量。

scipy函数scipy.linalg.eig返回特征值和特征向量的数组。

D, V = scipy.linalg.eig(P)

这里D(值数组)和V(向量数组)都是向量。

一种方法是在D中进行搜索并在V中提取相应的特征向量。是否有更简单的方法?

2 个答案:

答案 0 :(得分:5)

import numpy as np
import numpy.linalg as linalg


P = np.array([[2, 0, 0], [0, 1, 0], [0, 0, 3]])

D, V = linalg.eig(P)
print(D)
# [ 2.  1.  3.]

特征向量是V:

的列
V = V.T

for val, vec in zip(D, V):
    assert np.allclose(np.dot(P, vec), val*vec)

因此对应于特征值1.0的特征向量是

def near(a, b, rtol = 1e-5, atol = 1e-8):
    return np.abs(a-b)<(atol+rtol*np.abs(b))

print(V[near(D, 1.0)])
# [[ 0.  1.  0.]]

由于可以有多个具有相同特征值的特征向量,V[near(D, 1.0)]返回一个二维数组 - 数组的每一行都是一个特征值为1.0的特征向量。

答案 1 :(得分:4)

如果您正在寻找一个对应于一个特征值的特征向量,则使用scipy.sparse.linalg implementation of the eig function可能会更有效。 它允许查找固定数量的特征向量并围绕特定值移动搜索。你可以这样做:

values, vectors = scipy.sparse.linalg.eigs(P, k=1, sigma=1)