我很难找到使用OpenCV在Python中以特定(通常非常小)的角度围绕特定点旋转图像的示例。
这是我到目前为止所做的,但它会产生一个非常奇怪的结果图像,但它有点旋转:
def rotateImage( image, angle ):
if image != None:
dst_image = cv.CloneImage( image )
rotate_around = (0,0)
transl = cv.CreateMat(2, 3, cv.CV_32FC1 )
matrix = cv.GetRotationMatrix2D( rotate_around, angle, 1.0, transl )
cv.GetQuadrangleSubPix( image, dst_image, transl )
cv.GetRectSubPix( dst_image, image, rotate_around )
return dst_image
答案 0 :(得分:41)
import numpy as np
def rotateImage(image, angle):
image_center = tuple(np.array(image.shape[1::-1]) / 2)
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR)
return result
假设您正在使用cv2版本,该代码会找到您要旋转的图像的中心,计算变换矩阵并应用于图像。
答案 1 :(得分:26)
或者更容易使用 SciPy
from scipy import ndimage
#rotation angle in degree
rotated = ndimage.rotate(image_to_rotate, 45)
见 here 了解更多使用信息。
答案 2 :(得分:8)
cv2.warpAffine函数以相反的顺序获取shape参数:( col,row),上面的答案没有提及。这对我有用:
import numpy as np
def rotateImage(image, angle):
row,col = image.shape
center=tuple(np.array([row,col])/2)
rot_mat = cv2.getRotationMatrix2D(center,angle,1.0)
new_image = cv2.warpAffine(image, rot_mat, (col,row))
return new_image
答案 3 :(得分:7)
def rotate(image, angle, center = None, scale = 1.0):
(h, w) = image.shape[:2]
if center is None:
center = (w / 2, h / 2)
# Perform the rotation
M = cv2.getRotationMatrix2D(center, angle, scale)
rotated = cv2.warpAffine(image, M, (w, h))
return rotated
答案 4 :(得分:4)
import imutils
vs = VideoStream(src=0).start()
...
while (1):
frame = vs.read()
...
frame = imutils.rotate(frame, 45)
答案 5 :(得分:3)
快速调整@ alex-rodrigues答案......处理包括频道数量在内的形状。
import cv2
import numpy as np
def rotateImage(image, angle):
center=tuple(np.array(image.shape[0:2])/2)
rot_mat = cv2.getRotationMatrix2D(center,angle,1.0)
return cv2.warpAffine(image, rot_mat, image.shape[0:2],flags=cv2.INTER_LINEAR)
答案 6 :(得分:3)
我遇到了上述某些解决方案的问题,无法获得正确的“ bounding_box”或新的图像尺寸。因此,这是我的版本
def rotation(image, angleInDegrees):
h, w = image.shape[:2]
img_c = (w / 2, h / 2)
rot = cv2.getRotationMatrix2D(img_c, angleInDegrees, 1)
rad = math.radians(angleInDegrees)
sin = math.sin(rad)
cos = math.cos(rad)
b_w = int((h * abs(sin)) + (w * abs(cos)))
b_h = int((h * abs(cos)) + (w * abs(sin)))
rot[0, 2] += ((b_w / 2) - img_c[0])
rot[1, 2] += ((b_h / 2) - img_c[1])
outImg = cv2.warpAffine(image, rot, (b_w, b_h), flags=cv2.INTER_LINEAR)
return outImg
答案 7 :(得分:1)
您可以使用opencv python-
轻松旋转图像def funcRotate(degree=0):
degree = cv2.getTrackbarPos('degree','Frame')
rotation_matrix = cv2.getRotationMatrix2D((width / 2, height / 2), degree, 1)
rotated_image = cv2.warpAffine(original, rotation_matrix, (width, height))
cv2.imshow('Rotate', rotated_image)
如果您想创建一个跟踪栏,则只需使用cv2.createTrackbar()
并从您的主脚本调用funcRotate()
功能来创建跟踪栏。然后,您可以轻松地将其旋转到所需的任何角度。有关实现的完整详细信息,也可以在此处找到-actually defer to the Compare
option for your file or project
答案 8 :(得分:1)
您可以使用以下代码:
import numpy as np
from PIL import Image
import math
def shear(angle,x,y):
tangent=math.tan(angle/2)
new_x=round(x-y*tangent)
new_y=y
#shear 2
new_y=round(new_x*math.sin(angle)+new_y)
#since there is no change in new_x according to the shear matrix
#shear 3
new_x=round(new_x-new_y*tangent)
#since there is no change in new_y according to the shear matrix
return new_y,new_x
image = np.array(Image.open("test.png"))
# Load the image
angle=-int(input("Enter the angle :- "))
# Ask the user to enter the angle of rotation
# Define the most occuring variables
angle=math.radians(angle)
#converting degrees to radians
cosine=math.cos(angle)
sine=math.sin(angle)
height=image.shape[0]
#define the height of the image
width=image.shape[1]
#define the width of the image
# Define the height and width of the new image that is to be formed
new_height = round(abs(image.shape[0]*cosine)+abs(image.shape[1]*sine))+1
new_width = round(abs(image.shape[1]*cosine)+abs(image.shape[0]*sine))+1
output=np.zeros((new_height,new_width,image.shape[2]))
image_copy=output.copy()
# Find the centre of the image about which we have to rotate the image
original_centre_height = round(((image.shape[0]+1)/2)-1)
#with respect to the original image
original_centre_width = round(((image.shape[1]+1)/2)-1)
#with respect to the original image
# Find the centre of the new image that will be obtained
new_centre_height= round(((new_height+1)/2)-1)
#with respect to the new image
new_centre_width= round(((new_width+1)/2)-1)
#with respect to the new image
for i in range(height):
for j in range(width):
#co-ordinates of pixel with respect to the centre of original image
y=image.shape[0]-1-i-original_centre_height
x=image.shape[1]-1-j-original_centre_width
#Applying shear Transformation
new_y,new_x=shear(angle,x,y)
new_y=new_centre_height-new_y
new_x=new_centre_width-new_x
output[new_y,new_x,:]=image[i,j,:]
pil_img=Image.fromarray((output).astype(np.uint8))
pil_img.save("rotated_image.png")
答案 9 :(得分:0)
您可以简单地使用imutils包进行轮换。它有两种方法
您可以在此博客上获得更多信息: https://www.pyimagesearch.com/2017/01/02/rotate-images-correctly-with-opencv-and-python/
答案 10 :(得分:0)
这是一个仅使用 openCV 绕任意点 (x,y) 旋转的示例
def rotate_about_point(x, y, degree, image):
rot_mtx = cv.getRotationMatrix2D((x, y), angle, 1)
abs_cos = abs(rot_mtx[0, 0])
abs_sin = abs(rot_mtx[0, 1])
rot_wdt = int(frm_hgt * abs_sin + frm_wdt * abs_cos)
rot_hgt = int(frm_hgt * abs_cos + frm_wdt * abs_sin)
rot_mtx += np.asarray([[0, 0, -lftmost_x],
[0, 0, -topmost_y]])
rot_img = cv.warpAffine(image, rot_mtx, (rot_wdt, rot_hgt),
borderMode=cv.BORDER_CONSTANT)
return rot_img