如何使用cv::SimpleBlobDetector
类及其函数detectblobs()
而不是任何其他blob检测库?
答案 0 :(得分:39)
Python:读取图像blob.jpg并使用不同参数执行blob检测。
#!/usr/bin/python
# Standard imports
import cv2
import numpy as np;
# Read image
im = cv2.imread("blob.jpg")
# Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
# Change thresholds
params.minThreshold = 10
params.maxThreshold = 200
# Filter by Area.
params.filterByArea = True
params.minArea = 1500
# Filter by Circularity
params.filterByCircularity = True
params.minCircularity = 0.1
# Filter by Convexity
params.filterByConvexity = True
params.minConvexity = 0.87
# Filter by Inertia
params.filterByInertia = True
params.minInertiaRatio = 0.01
# Create a detector with the parameters
detector = cv2.SimpleBlobDetector(params)
# Detect blobs.
keypoints = detector.detect(im)
# Draw detected blobs as red circles.
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
# the size of the circle corresponds to the size of blob
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Show blobs
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)
C ++:读取图像blob.jpg并使用不同参数执行blob检测。
#include "opencv2/opencv.hpp"
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
// Read image
#if CV_MAJOR_VERSION < 3 // If you are using OpenCV 2
Mat im = imread("blob.jpg", CV_LOAD_IMAGE_GRAYSCALE);
#else
Mat im = imread("blob.jpg", IMREAD_GRAYSCALE);
#endif
// Setup SimpleBlobDetector parameters.
SimpleBlobDetector::Params params;
// Change thresholds
params.minThreshold = 10;
params.maxThreshold = 200;
// Filter by Area.
params.filterByArea = true;
params.minArea = 1500;
// Filter by Circularity
params.filterByCircularity = true;
params.minCircularity = 0.1;
// Filter by Convexity
params.filterByConvexity = true;
params.minConvexity = 0.87;
// Filter by Inertia
params.filterByInertia = true;
params.minInertiaRatio = 0.01;
// Storage for blobs
std::vector<KeyPoint> keypoints;
#if CV_MAJOR_VERSION < 3 // If you are using OpenCV 2
// Set up detector with params
SimpleBlobDetector detector(params);
// Detect blobs
detector.detect(im, keypoints);
#else
// Set up detector with params
Ptr<SimpleBlobDetector> detector = SimpleBlobDetector::create(params);
// Detect blobs
detector->detect(im, keypoints);
#endif
// Draw detected blobs as red circles.
// DrawMatchesFlags::DRAW_RICH_KEYPOINTS flag ensures
// the size of the circle corresponds to the size of blob
Mat im_with_keypoints;
drawKeypoints(im, keypoints, im_with_keypoints, Scalar(0, 0, 255), DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
// Show blobs
imshow("keypoints", im_with_keypoints);
waitKey(0);
}
我在tutorial处写的LearnOpenCV.com复制了答案,解释了SimpleBlobDetector的各种参数。您可以在教程中找到有关参数的其他详细信息。
答案 1 :(得分:26)
您可以将blob检测器的参数存储在文件中,但这不是必需的。例如:
// set up the parameters (check the defaults in opencv's code in blobdetector.cpp)
cv::SimpleBlobDetector::Params params;
params.minDistBetweenBlobs = 50.0f;
params.filterByInertia = false;
params.filterByConvexity = false;
params.filterByColor = false;
params.filterByCircularity = false;
params.filterByArea = true;
params.minArea = 20.0f;
params.maxArea = 500.0f;
// ... any other params you don't want default value
// set up and create the detector using the parameters
cv::SimpleBlobDetector blob_detector(params);
// or cv::Ptr<cv::SimpleBlobDetector> detector = cv::SimpleBlobDetector::create(params)
// detect!
vector<cv::KeyPoint> keypoints;
blob_detector.detect(image, keypoints);
// extract the x y coordinates of the keypoints:
for (int i=0; i<keypoints.size(); i++){
float X = keypoints[i].pt.x;
float Y = keypoints[i].pt.y;
}
答案 2 :(得分:4)
注意:此处的所有示例均使用OpenCV 2.X API。
在OpenCV 3.X中,您需要使用:
Ptr<SimpleBlobDetector> d = SimpleBlobDetector::create(params);
答案 3 :(得分:2)
// creation
cv::SimpleBlobDetector * blob_detector;
blob_detector = new SimpleBlobDetector();
blob_detector->create("SimpleBlobDetector");
// change params - first move it to public!!
blob_detector->params.filterByArea = true;
blob_detector->params.minArea = 1;
blob_detector->params.maxArea = 32000;
// or read / write them with file
FileStorage fs("test_fs.yml", FileStorage::WRITE);
FileNode fn = fs["features"];
//blob_detector->read(fn);
// detect
vector<KeyPoint> keypoints;
blob_detector->detect(img_text, keypoints);
fs.release();
我知道为什么,但是params受到保护。所以我把它移到文件features2d.hpp中公开:
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
public:
Params params;
protected:
struct CV_EXPORTS Center
{
Point2d loc
如果您不这样做,更改参数的唯一方法是创建文件(FileStorage fs("test_fs.yml", FileStorage::WRITE);
),而不是在记事本中打开它,然后进行编辑。或许还有另一种方式,但我不知道它。