在AI中,是否有任何关于如何将基因组实现到模拟中的简单和/或非常直观的例子?
基本上,我正在经历一个简单的演练(不是教程,而是一个总结性质的东西),详细介绍了如何实现一个基因组,它可以改变总体中“个体”的特征。
这些基因不就像:
相反,它们应该是定义上述事物的东西,从模拟居民的实际特征中抽象出基因组。
我对自己想要的内容足够清楚吗?
无论如何,如果有任何方法你尝试过更好,并且以these sexual swimmers之类的形式实现进化,那么请务必先发布它!灵感越有趣,越好:)
答案 0 :(得分:3)
如果您自己实施“个人”,那么任何对象都可以充当您的基因组。
<强>特性强>
进一步简化此操作的一种方法是将您的特征转换为枚举。通过这种方式,您可以通过从中选择特征来对父母基因进行简单的重组,并通过随机选择一个特征的枚举值来突变基因。
一旦这个工作正常,您可以使用值范围获得更多细微差别,但使用枚举可以帮助我保持清晰。
<强>健身强>
然后给出这些特征意味着您需要一个描述性能的适应度函数。特征之间的关系取决于您,因此您可以以任何有意义的方式描述它。这只是提供比较两种基因组的一致方法。
<强>模拟强>
然后运行模拟只需从几个父母开始,并生成一堆孩子来完成彼此。这当然可以自动化,但这是一个明确的例子。
Java示例
import java.util.PriorityQueue;
class Genome implements Comparable<Genome> {
public enum Mass {
LIGHT(1),
AVERAGE(2),
HEAVY(3);
final Integer value;
Mass(Integer value) {
this.value = value;
}
}
public enum Strength {
WEAK(1),
AVERAGE(2),
STRONG(3);
final Integer value;
Strength(Integer value) {
this.value = value;
}
}
public enum Length {
SHORT(1),
AVERAGE(2),
LONG(3);
final Integer value;
Length(Integer value) {
this.value = value;
}
}
private final Mass mass;
private final Strength strength;
private final Length length;
public Genome(Mass mass, Strength strength, Length length) {
this.mass = mass;
this.strength = strength;
this.length = length;
}
private Integer fitness() {
return strength.value * length.value - mass.value * mass.value;
}
@Override public int compareTo(Genome that) {
// notice the fitter is less in precedence
if(this.fitness() > that.fitness())
return -1;
else if(this.fitness() < that.fitness())
return 1;
else // this.fitness() == that.fitness()
return 0;
}
public static Genome recombine(Genome... parents) {
if(parents.length < 1)
return null;
// Select parents randomly and then characteristics from them
Mass mass = parents[(int)(Math.random() * parents.length)].mass;
Strength strength = parents[(int)(Math.random() * parents.length)].strength;
Length length = parents[(int)(Math.random() * parents.length)].length;;
return new Genome(mass, strength, length);
}
public static Genome mutate(Genome parent) {
// Select characteristics randomly
Mass mass = Mass.values()[(int)(Math.random() * Mass.values().length)];
Strength strength = Strength.values()[(int)(Math.random() * Strength.values().length)];
Length length = Length.values()[(int)(Math.random() * Length.values().length)];
return new Genome(mass, strength, length);
}
public static void main() {
PriorityQueue<Genome> population = new PriorityQueue<Genome>();
Genome parent1 = new Genome(Mass.LIGHT, Strength.STRONG, Length.SHORT);
Genome parent2 = new Genome(Mass.AVERAGE, Strength.AVERAGE, Length.AVERAGE);
Genome parent3 = new Genome(Mass.HEAVY, Strength.WEAK, Length.LONG);
population.add(parent1);
population.add(parent2);
population.add(parent3);
Genome child1 = Genome.recombine(parent1, parent2);
Genome child2 = Genome.recombine(parent1, parent2);
Genome child3 = Genome.recombine(parent1, parent3);
Genome child4 = Genome.recombine(parent1, parent3);
Genome child5 = Genome.recombine(parent2, parent3);
Genome child6 = Genome.recombine(parent2, parent3);
Genome child7 = Genome.recombine(parent1, parent2, parent3);
Genome child8 = Genome.recombine(parent1, parent2, parent3);
Genome child9 = Genome.recombine(parent1, parent2, parent3);
child1 = Genome.mutate(child1);
child2 = Genome.mutate(child2);
child4 = Genome.mutate(child4);
child8 = Genome.mutate(child8);
population.add(child1);
population.add(child2);
population.add(child3);
population.add(child4);
population.add(child5);
population.add(child6);
population.add(child7);
population.add(child8);
population.add(child9);
// and the winner is...
Genome fittest = population.peek();
}
}
<强>编码
因为你觉得你想把这些特征编码成一个序列,这个序列在序列中有一些明确的特征,而其他特征则来源于这些特征。
你可以这样做,我的编码你的rangle值,如上面的枚举,变成一个整数与块表示你的显式特征。
例如,如果您有两个具有四个可能值的显式特征,则可以将该集编码为00XX + XX00形式的整数。因此,例如0111可能对应于质量01和长度为11.这样做可以让您通过更改序列本身中的位来进行变异。
Java示例
import java.util.PriorityQueue;
class Genome implements Comparable<Genome> {
private final Integer sequence;
private static final Integer bitmaskChunk = 3; // ...0011
private static final Integer shiftMass = 0; // ...00XX
private static final Integer shiftLength = 2; // ...XX00
private static final Integer shiftModulus = 4; // ...0000
private Integer getMass() {
return (sequence >>> shiftMass) & bitmaskChunk;
}
private Integer getLength() {
return (sequence >>> shiftLength) & bitmaskChunk;
}
public Integer getStrength() {
return getMass() * getLength();
}
public Genome(Integer sequence) {
this.sequence = sequence % (1 << Genome.shiftModulus);
}
private Integer fitness() {
// Some performance measure
return getStrength() * getLength() - getMass() * getMass();
}
@Override public int compareTo(Genome that) {
// notice the fitter is less in precedence
if(this.fitness() > that.fitness())
return -1;
else if(this.fitness() < that.fitness())
return 1;
else // this.fitness() == that.fitness()
return 0;
}
public static Genome recombine(Genome... parents) {
if(parents.length < 1)
return null;
Integer sequence = 0;
// Select parents randomly and then characteristics from them
sequence += parents[(int)(Math.random() * parents.length)].getMass() << Genome.shiftMass;
sequence += parents[(int)(Math.random() * parents.length)].getLength() << Genome.shiftLength;
return new Genome(sequence);
}
public static Genome mutate(Genome parent) {
Integer sequence = parent.sequence;
// Randomly change sequence in some way
sequence *= (int)(Math.random() * (1 << Genome.shiftModulus));
return new Genome(sequence);
}
public static void main() {
PriorityQueue<Genome> population = new PriorityQueue<Genome>();
Genome parent1 = new Genome((int)(Math.random() * (1 << Genome.shiftModulus)));
Genome parent2 = new Genome((int)(Math.random() * (1 << Genome.shiftModulus)));
Genome parent3 = new Genome((int)(Math.random() * (1 << Genome.shiftModulus)));
population.add(parent1);
population.add(parent2);
population.add(parent3);
Genome child1 = Genome.recombine(parent1, parent2);
Genome child2 = Genome.recombine(parent1, parent2);
Genome child3 = Genome.recombine(parent1, parent3);
Genome child4 = Genome.recombine(parent1, parent3);
Genome child5 = Genome.recombine(parent2, parent3);
Genome child6 = Genome.recombine(parent2, parent3);
Genome child7 = Genome.recombine(parent1, parent2, parent3);
Genome child8 = Genome.recombine(parent1, parent2, parent3);
Genome child9 = Genome.recombine(parent1, parent2, parent3);
child1 = Genome.mutate(child1);
child2 = Genome.mutate(child2);
child4 = Genome.mutate(child4);
child8 = Genome.mutate(child8);
population.add(child1);
population.add(child2);
population.add(child3);
population.add(child4);
population.add(child5);
population.add(child6);
population.add(child7);
population.add(child8);
population.add(child9);
// and the winner is...
Genome fittest = population.peek();
}
}
我希望这就是你要找的东西。祝你好运。