Rubik cubefinder.py错误

时间:2011-06-30 16:08:40

标签: python opencv computer-vision rubiks-cube

我想使用我发现的一些代码来检测此网站上的Rubiks多维数据集:cubefinder.py

在管理安装所有OpenCV库之后,当我向相机显示多维数据集时出现此错误:

Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>> 

Traceback (most recent call last):
  File "C:\Users\user\Desktop\cubefinder.py", line 574, in <module>
    cv.Line(sg,pt[0],pt[1],(0,255,0),2)
TypeError: CvPoint argument 'pt1' expects two integers

编辑:对不起那一大堆代码,我只是看到这是愚蠢和不必要的。

2 个答案:

答案 0 :(得分:3)

函数cv.Line期望将点指定为整数对,但是您要传递成对的浮点数。在将点传递给cv.Line之前,您需要将点四舍五入到最接近的整数点。也许有这样的辅助函数:

def grid(p):
    """Return the nearest point with integer coordinates to p."""
    return int(round(p[0])), int(round(p[1]))

那么你的

cv.Line(sg,pt[0],pt[1],(0,255,0),2)

变为

cv.Line(sg,grid(pt[0]),grid(pt[1]),(0,255,0),2)

(另一种可能性是避免首先制作浮点坐标。但这取决于您的应用程序是否需要额外的精度。)

答案 1 :(得分:1)

以下是使其在OpenCV 2.3中运行的代码。为什么他们没有在函数调用cv.Line()中进行类型检查以将浮点数转换为int超出我的范围。无论如何,你是:

#!/usr/bin/python
import cv2.cv as cv
import sys
from random import uniform
from time import sleep
from math import sin,cos,pi,atan2,sqrt
from numpy import matrix
from time import time
from random import randrange

capture = cv.CreateCameraCapture( 0 )
cv.NamedWindow( "Fig", 1 )
frame = cv.QueryFrame( capture )
S1,S2=cv.GetSize(frame)
den=2
sg= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg2= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg3= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg4= cv.CreateImage((S1/den,S2/den), 8, 3 )
sg5= cv.CreateImage((S1/den,S2/den), 8, 3 )
sgc= cv.CreateImage((S1/den,S2/den), 8, 3 )
hsv= cv.CreateImage((S1/den,S2/den), 8, 3 )
dst= cv.CreateImage((S1/den,S2/den), 8, 1 )
dst2= cv.CreateImage((S1/den,S2/den), 8, 1 )
d= cv.CreateImage((S1/den,S2/den), cv.IPL_DEPTH_16S, 1 )
d2=cv.CreateImage((S1/den,S2/den), 8, 1 )
d3=cv.CreateImage((S1/den,S2/den), 8, 1 )
b= cv.CreateImage((S1/den,S2/den), 8, 1 )
b4= cv.CreateImage((S1/den,S2/den), 8, 1 )
both= cv.CreateImage((S1/den,S2/den), 8, 1 )
harr= cv.CreateImage((S1/den,S2/den), 32, 1 )
W,H=S1/den,S2/den
lastdetected= 0
THR=100
dects=50 #ideal number of number of lines detections

hue= cv.CreateImage((S1/den,S2/den), 8, 1 )
sat= cv.CreateImage((S1/den,S2/den), 8, 1 )
val= cv.CreateImage((S1/den,S2/den), 8, 1 )

#stores the coordinates that make up the face. in order: p,p1,p3,p2 (i.e.) counterclockwise winding
prevface=[(0,0),(5,0),(0,5)]
dodetection=True

onlyBlackCubes=False

def grid(p):
    """Return the nearest point with integer coordinates to p."""
    return int(round(p[0])), int(round(p[1]))


def intersect_seg(x1,x2,x3,x4,y1,y2,y3,y4):
    den= (y4-y3)*(x2-x1)-(x4-x3)*(y2-y1)
    if abs(den)<0.1: return (False, (0,0),(0,0))
    ua=(x4-x3)*(y1-y3)-(y4-y3)*(x1-x3)
    ub=(x2-x1)*(y1-y3)-(y2-y1)*(x1-x3)    
    ua=ua/den
    ub=ub/den
    x=x1+ua*(x2-x1)
    y=y1+ua*(y2-y1)
    return (True,(ua,ub),(x,y))

def ptdst(p1,p2):
    return sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1]))

def ptdstw(p1,p2):
    #return sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1]))

    #test if hue is reliable measurement
    if p1[1]<100 or p2[1]<100:
        #hue measurement will be unreliable. Probably white stickers are present
        #leave this until end
        return 300.0+abs(p1[0]-p2[0])
    else:
        return abs(p1[0]-p2[0])


def ptdst3(p1,p2):
    dist=sqrt((p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1])+(p1[2]-p2[2])*(p1[2]-p2[2]))
    if (p1[0]>245 and p1[1]>245 and p1[2]>245):
        #the sticker could potentially be washed out. Lets leave it to the end
        dist=dist+300.0
    return dist

def compfaces(f1,f2):
    totd=0
    for p1 in f1:
        mind=10000
        for p2 in f2:
            d=ptdst(p1,p2)
            if d<mind:
                mind=d
        totd += mind
    return totd/4

def avg(p1,p2):
    return (0.5*p1[0]+0.5*p2[0], 0.5*p2[1]+0.5*p2[1])

def areclose(t1,t2,t):
    #is t1 close to t2 within t?
    return abs(t1[0]-t2[0])<t and abs(t1[1]-t2[1])<t

def winded(p1,p2,p3,p4):
    #return the pts in correct order based on quadrants
    avg=(0.25*(p1[0]+p2[0]+p3[0]+p4[0]),0.25*(p1[1]+p2[1]+p3[1]+p4[1]))
    ps=[(atan2(p[1]-avg[1], p[0]-avg[0]), p) for p in [p1,p2,p3,p4]]
    ps.sort(reverse=True)
    return [p[1] for p in ps]

#return tuple of neighbors given face and sticker indeces
def neighbors(f,s):
    if f==0 and s==0: return ((1,2),(4,0))
    if f==0 and s==1: return ((4,3),)
    if f==0 and s==2: return ((4,6),(3,0))
    if f==0 and s==3: return ((1,5),)
    if f==0 and s==5: return ((3,3),)
    if f==0 and s==6: return ((1,8),(5,2))
    if f==0 and s==7: return ((5,5),)
    if f==0 and s==8: return ((3,6),(5,8))

    if f==1 and s==0: return ((2,2),(4,2))
    if f==1 and s==1: return ((4,1),)
    if f==1 and s==2: return ((4,0),(0,0))
    if f==1 and s==3: return ((2,5),)
    if f==1 and s==5: return ((0,3),)
    if f==1 and s==6: return ((2,8),(5,0))
    if f==1 and s==7: return ((5,1),)
    if f==1 and s==8: return ((0,6),(5,2))

    if f==2 and s==0: return ((4,8),(3,2))
    if f==2 and s==1: return ((4,5),)
    if f==2 and s==2: return ((4,2),(1,0))
    if f==2 and s==3: return ((3,5),)
    if f==2 and s==5: return ((1,3),)
    if f==2 and s==6: return ((3,8),(5,6))
    if f==2 and s==7: return ((5,3),)
    if f==2 and s==8: return ((1,6),(5,0))

    if f==3 and s==0: return ((4,6),(0,2))
    if f==3 and s==1: return ((4,7),)
    if f==3 and s==2: return ((4,8),(2,0))
    if f==3 and s==3: return ((0,5),)
    if f==3 and s==5: return ((2,3),)
    if f==3 and s==6: return ((0,8),(5,8))
    if f==3 and s==7: return ((5,7),)
    if f==3 and s==8: return ((2,6),(5,6))

    if f==4 and s==0: return ((1,2),(0,0))
    if f==4 and s==1: return ((1,1),)
    if f==4 and s==2: return ((1,0),(2,2))
    if f==4 and s==3: return ((0,1),)
    if f==4 and s==5: return ((2,1),)
    if f==4 and s==6: return ((0,2),(3,0))
    if f==4 and s==7: return ((3,1),)
    if f==4 and s==8: return ((3,2),(2,0))

    if f==5 and s==0: return ((1,6),(2,8))
    if f==5 and s==1: return ((1,7),)
    if f==5 and s==2: return ((1,8),(0,6))
    if f==5 and s==3: return ((2,7),)
    if f==5 and s==5: return ((0,7),)
    if f==5 and s==6: return ((2,6),(3,8))
    if f==5 and s==7: return ((3,7),)
    if f==5 and s==8: return ((3,6),(0,8))

def processColors(useRGB=True):
    global assigned,didassignments

    #assign all colors
    bestj=0
    besti=0
    bestcon=0
    matchesto=0
    bestd=10001
    taken=[0 for i in range(6)]
    done=0
    opposite={0:2, 1:3, 2:0, 3:1, 4:5, 5:4} #dict of opposite faces
    #possibilities for each face
    poss={}
    for j,f in enumerate(hsvs):
        for i,s in enumerate(f):
            poss[j,i]=range(6)

    #we are looping different arrays based on the useRGB flag
    toloop=hsvs
    if useRGB: toloop=colors

    while done<8*6:
        bestd=10000
        forced=False
        for j,f in enumerate(toloop):
            for i,s in enumerate(f):
                if i!=4 and assigned[j][i]==-1 and (not forced):
                    #this is a non-center sticker.
                    #find the closest center
                    considered=0
                    for k in poss[j,i]:
                        #all colors for this center were already assigned
                        if taken[k]<8:

                            #use Euclidean in RGB space or more elaborate
                            #distance metric for Hue Saturation
                            if useRGB:
                                dist=ptdst3(s, toloop[k][4])
                            else:
                                dist=ptdstw(s, toloop[k][4])

                            considered+=1
                            if dist<bestd:
                                bestd=dist
                                bestj=j
                                besti=i
                                matchesto=k
                    #IDEA: ADD PENALTY IF 2ND CLOSEST MATCH IS CLOSE TO FIRST
                    #i.e. we are uncertain about it

                    if besti==i and bestj==j: bestcon=considered
                    if considered==1:
                        #this sticker is forced! Terminate search 
                        #for better matches
                        forced=True
                        print 'sticker',(i,j),'had color forced!'


        #assign it
        done=done+1
        #print matchesto,bestd
        assigned[bestj][besti]=matchesto
        print bestcon

        op= opposite[matchesto] #get the opposite side
        #remove this possibility from neighboring stickers
        #since we cant have red-red edges for example
        #also corners have 2 neighbors. Also remove possibilities
        #of edge/corners made up of opposite sides
        ns=neighbors(bestj,besti)
        for neighbor in ns:
            p=poss[neighbor]
            if matchesto in p: p.remove(matchesto)
            if op in p: p.remove(op)

        taken[matchesto]+=1

    didassignments=True

succ=0 #number of frames in a row that we were successful in finding the outline
tracking=0
win_size=5
flags=0
detected=0

grey = cv.CreateImage ((W,H), 8, 1)
prev_grey = cv.CreateImage ((W,H), 8, 1)
pyramid = cv.CreateImage ((W,H), 8, 1)
prev_pyramid = cv.CreateImage ((W,H), 8, 1)

ff= cv.InitFont(cv.CV_FONT_HERSHEY_PLAIN, 1,1, shear=0, thickness=1, lineType=8)

counter=0 #global iteration counter
undetectednum=100
stage=1 #1: learning colors
extract=False
selected=0
colors=[[] for i in range(6)]
hsvs=[[] for i in range(6)]
assigned=[[-1 for i in range(9)] for j in range(6)]
for i in range(6):
    assigned[i][4]=i

didassignments=False
#orange green red blue yellow white. Used only for visualization purposes
mycols=[(0,127,255), (20,240,20), (0,0,255), (200,0,0), (0,255,255), (255,255,255)]

while True:
    frame = cv.QueryFrame( capture )
    if not frame:
        cv.WaitKey(0)
        break

    cv.Resize( frame, sg)

    #cv.EqualizeHist(val, val)
    #cv.Merge(hue,sat,val,None,sg2)
    #cv.CvtColor(sg2,sg,cv.CV_HSV2RGB)
    cv.Copy(sg, sgc)

    cv.CvtColor (sg, grey, cv.CV_RGB2GRAY)

    #cv.EqualizeHist(grey,grey)

    #tracking mode
    if tracking>0:

        detected=2
        #compute optical flow
        features, status, track_error = cv.CalcOpticalFlowPyrLK (
            prev_grey, grey, prev_pyramid, pyramid,
            features,
            (win_size, win_size), 3,
            (cv.CV_TERMCRIT_ITER|cv.CV_TERMCRIT_EPS, 20, 0.03),
            flags)
        # set back the points we keep
        features = [ p for (st,p) in zip(status, features) if st]
        if len(features)<4: 
            tracking= 0 #we lost it, restart search
        else:
            #make sure that in addition the distances are consistent
            ds1=ptdst(features[0], features[1])
            ds2=ptdst(features[2], features[3])
            if max(ds1,ds2)/min(ds1,ds2)>1.4: tracking=0

            ds3=ptdst(features[0], features[2])
            ds4=ptdst(features[1], features[3])
            if max(ds3,ds4)/min(ds3,ds4)>1.4: tracking=0

            if ds1< 10 or ds2<10 or ds3<10 or ds4<10: tracking=0
            if tracking==0: detected=0

    #detection mode
    if tracking==0:
        detected=0
        cv.Smooth(grey,dst2,cv.CV_GAUSSIAN, 3)
        cv.Laplace(dst2,d)
        cv.CmpS(d,8,d2,cv.CV_CMP_GT)

        if onlyBlackCubes:
            #can also detect on black lines for improved robustness
            cv.CmpS(grey,100,b,cv.CV_CMP_LT)
            cv.And(b,d2,d2)

        #these weights should be adaptive. We should always detect 100 lines
        if lastdetected>dects: THR=THR+1
        if lastdetected<dects: THR=max(2,THR-1)
        li= cv.HoughLines2(d2, cv.CreateMemStorage(), cv.CV_HOUGH_PROBABILISTIC, 1, 3.1415926/45, THR, 10, 5)

        #store angles for later
        angs=[]
        for (p1, p2) in li: 
            #cv.Line(sg,p1,p2,(0,255,0))
            a = atan2(p2[1]-p1[1],p2[0]-p1[0])
            if a<0:a+=pi
            angs.append(a)

        #lets look for lines that share a common end point
        t=10
        totry=[]
        for i in range(len(li)):
            p1,p2=li[i]
            for j in range(i+1,len(li)):
                q1,q2=li[j]

                #test lengths are approximately consistent
                dd1= sqrt((p2[0]-p1[0])*(p2[0]-p1[0])+(p2[1]-p1[1])*(p2[1]-p1[1]))
                dd2= sqrt((q2[0]-q1[0])*(q2[0]-q1[0])+(q2[1]-q1[1])*(q2[1]-q1[1]))
                if max(dd1,dd2)/min(dd1,dd2)>1.3: continue

                matched=0
                if areclose(p1,q2,t): 
                    IT=(avg(p1,q2), p2, q1,dd1)
                    matched=matched+1
                if areclose(p2,q2,t): 
                    IT=(avg(p2,q2), p1, q1,dd1)
                    matched=matched+1
                if areclose(p1,q1,t): 
                    IT=(avg(p1,q1), p2, q2,dd1)
                    matched=matched+1
                if areclose(p2,q1,t): 
                    IT=(avg(p2,q1), q2, p1,dd1)
                    matched=matched+1

                if matched==0:
                    #not touching at corner... try also inner grid segments hypothesis?
                    p1=(float(p1[0]),float(p1[1]))
                    p2=(float(p2[0]),float(p2[1]))
                    q1=(float(q1[0]),float(q1[1]))
                    q2=(float(q2[0]),float(q2[1]))
                    success,(ua,ub),(x,y)=\
                        intersect_seg(p1[0],p2[0],q1[0],q2[0],p1[1],p2[1],q1[1],q2[1])
                    if success and ua>0 and ua<1 and ub>0 and ub<1:
                        #if they intersect
                        #cv.Line(sg, p1, p2, (255,255,255))
                        ok1=0
                        ok2=0
                        if abs(ua-1.0/3)<0.05:ok1=1
                        if abs(ua-2.0/3)<0.05:ok1=2
                        if abs(ub-1.0/3)<0.05:ok2=1
                        if abs(ub-2.0/3)<0.05:ok2=2
                        if ok1>0 and ok2>0:
                            #ok these are inner lines of grid
                            #flip if necessary
                            if ok1==2: p1,p2=p2,p1
                            if ok2==2: q1,q2=q2,q1

                            #both lines now go from p1->p2, q1->q2 and 
                            #intersect at 1/3
                            #calculate IT
                            z1=(q1[0]+2.0/3*(p2[0]-p1[0]),q1[1]+2.0/3*(p2[1]-p1[1]))
                            z2=(p1[0]+2.0/3*(q2[0]-q1[0]),p1[1]+2.0/3*(q2[1]-q1[1]))
                            z=(p1[0]-1.0/3*(q2[0]-q1[0]),p1[1]-1.0/3*(q2[1]-q1[1]))
                            IT=(z,z1,z2,dd1)
                            matched=1

                #only single one matched!! Could be corner
                if matched==1:

                    #also test angle
                    a1 = atan2(p2[1]-p1[1],p2[0]-p1[0])
                    a2 = atan2(q2[1]-q1[1],q2[0]-q1[0])
                    if a1<0:a1+=pi
                    if a2<0:a2+=pi
                    ang=abs(abs(a2-a1)-pi/2)
                    if ang < 0.5:
                        totry.append(IT)
                        #cv.Circle(sg, IT[0], 5, (255,255,255))


        #now check if any points in totry are consistent!
        #t=4
        res=[]
        for i in range(len(totry)):

            p,p1,p2,dd=totry[i]
            a1 = atan2(p1[1]-p[1],p1[0]-p[0])
            a2 = atan2(p2[1]-p[1],p2[0]-p[0])
            if a1<0:a1+=pi
            if a2<0:a2+=pi
            dd=1.7*dd
            evidence=0
            totallines=0

            #cv.Line(sg,p,p2,(0,255,0))
            #cv.Line(sg,p,p1,(0,255,0))

            #affine transform to local coords
            A = matrix([[p2[0]-p[0],p1[0]-p[0],p[0]],[p2[1]-p[1],p1[1]-p[1],p[1]],[0,0,1]])
            Ainv= A.I

            v=matrix([[p1[0]],[p1[1]],[1]])

            #check likelihood of this coordinate system. iterate all lines
            #and see how many align with grid
            for j in range(len(li)):

                #test angle consistency with either one of the two angles
                a = angs[j]
                ang1=abs(abs(a-a1)-pi/2)
                ang2=abs(abs(a-a2)-pi/2)
                if ang1 > 0.1 and ang2>0.1: continue

                #test position consistency.
                q1,q2= li[j]
                qwe=0.06

                #test one endpoint
                v=matrix([[q1[0]],[q1[1]],[1]])
                vp=Ainv*v; #project it
                if vp[0,0] > 1.1 or vp[0,0]<-0.1: continue
                if vp[1,0] > 1.1 or vp[1,0]<-0.1: continue
                if abs(vp[0,0]-1/3.0)>qwe and abs(vp[0,0]-2/3.0)>qwe and \
                    abs(vp[1,0]-1/3.0)>qwe and abs(vp[1,0]-2/3.0)>qwe: continue

                #the other end point
                v=matrix([[q2[0]],[q2[1]],[1]])
                vp=Ainv*v;
                if vp[0,0] > 1.1 or vp[0,0]<-0.1: continue
                if vp[1,0] > 1.1 or vp[1,0]<-0.1: continue
                if abs(vp[0,0]-1/3.0)>qwe and abs(vp[0,0]-2/3.0)>qwe and \
                    abs(vp[1,0]-1/3.0)>qwe and abs(vp[1,0]-2/3.0)>qwe: continue

                #cv.Circle(sg, q1, 3, (255,255,0))
                #cv.Circle(sg, q2, 3, (255,255,0))
                #cv.Line(sg,q1,q2,(0,255,255))
                evidence+=1

            #print evidence
            res.append((evidence, (p,p1,p2)))

        minch=10000
        res.sort(reverse=True)
        #print [a[0] for a in res]
        if len(res)>0:
            minps=[]
            pt=[]
            #among good observations find best one that fits with last one
            for i in range(len(res)):
                if res[i][0]>0.05*dects:
                    #OK WE HAVE GRID
                    p,p1,p2=res[i][1]
                    p3= (p2[0]+p1[0]-p[0], p2[1]+p1[1]-p[1])

                    #cv.Line(sg,p,p1,(0,255,0),2)
                    #cv.Line(sg,p,p2,(0,255,0),2)
                    #cv.Line(sg,p2,p3,(0,255,0),2)
                    #cv.Line(sg,p3,p1,(0,255,0),2)
                    #cen=(0.5*p2[0]+0.5*p1[0],0.5*p2[1]+0.5*p1[1])
                    #cv.Circle(sg, cen, 20, (0,0,255),5)
                    #cv.Line(sg, (0,cen[1]), (320,cen[1]),(0,255,0),2)
                    #cv.Line(sg, (cen[0],0), (cen[0],240), (0,255,0),2)

                    w=[p,p1,p2,p3]
                    p3= (prevface[2][0]+prevface[1][0]-prevface[0][0], 
                         prevface[2][1]+prevface[1][1]-prevface[0][1])
                    tc= (prevface[0],prevface[1],prevface[2],p3)
                    ch=compfaces(w,tc) 
                    if ch<minch:
                        minch=ch
                        minps= (p,p1,p2)

            if len(minps)>0:
                prevface=minps
                #print minch

                if minch<10:
                    #good enough!
                    succ+=1
                    pt=prevface
                    detected=1

            else:
                succ=0

            #we matched a few times same grid
            #coincidence? I think NOT!!! Init LK tracker
            if succ>2 and 1:
                #initialize features for LK
                pt=[]
                for i in [1.0/3, 2.0/3]:
                    for j in [1.0/3, 2.0/3]:
                        pt.append((p0[0]+i*v1[0]+j*v2[0], p0[1]+i*v1[1]+j*v2[1]))

                #refine points slightly
                #features = cv.FindCornerSubPix (
                #grey,
                #pt,
                #(win_size, win_size),  (-1, -1),
                #(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS,
                #20, 0.03))
                features=pt
                tracking=1
                succ=0

    else:
        #we are in tracking mode, we need to fill in pt[] array
        #calculate the pt array for drawing from features
        #for p in features:
        #    cv.Circle(sg, p, 3, (255,255,255),-1)
        p=features[0]
        p1=features[1]
        p2=features[2]

        print p
        print p1
        print p2

        v1=(p1[0]-p[0],p1[1]-p[1])
        v2=(p2[0]-p[0],p2[1]-p[1])

        pt=[(p[0]-v1[0]-v2[0], p[1]-v1[1]-v2[1]),
            (p[0]+2*v2[0]-v1[0], p[1]+2*v2[1]-v1[1]),
            (p[0]+2*v1[0]-v2[0], p[1]+2*v1[1]-v2[1])]

        prevface=[pt[0],pt[1],pt[2]]

    #use pt[] array to do drawing
    if (detected or undetectednum<1) and dodetection:
        #undetectednum 'fills in' a few detection to make
        #things look smoother in case we fall out one frame
        #for some reason
        if not detected: 
            undetectednum+=1
            pt=lastpt
        if detected: 
            undetectednum=0
            lastpt=pt

        print pt
        new_pt = []
        for npt in pt:
          new_pt.append((int(round(npt[0])), int(round(npt[1]))))

        pt = new_pt
        print pt

        #~ pt = [p = (round(p[0]), round(p[1])) for p in pt]
        #~ pt = [p = (round(p[0]), round(p[1])) for p in pt]
        #~ for p in pt:
          #~ print p
          #~ return int(round(p[0])), int(round(p[1]))
          #~ [p = (round(p[0]), round(p[1])) for p in pt]
          #~ print "new"
          #~ print p

        print pt
        #extract the colors
        #convert to HSV
        cv.CvtColor(sgc, hsv, cv.CV_RGB2HSV)
        cv.Split(hsv, hue, sat, val, None)

        #do the drawing. pt array should store p,p1,p2
        p3= (pt[2][0]+pt[1][0]-pt[0][0], pt[2][1]+pt[1][1]-pt[0][1])
        cv.Line(sg,pt[0],pt[1],(0,255,0),2)
        cv.Line(sg,pt[1],p3,(0,255,0),2)
        cv.Line(sg,p3,pt[2],(0,255,0),2)
        cv.Line(sg,pt[2],pt[0],(0,255,0),2)

        #first sort the points so that 0 is BL 1 is UL and 2 is BR
        pt=winded(pt[0],pt[1],pt[2],p3)

        #find the coordinates of the 9 places we want to extract over
        v1=(pt[1][0]-pt[0][0], pt[1][1]-pt[0][1])
        v2=(pt[3][0]-pt[0][0], pt[3][1]-pt[0][1])
        p0=(pt[0][0],pt[0][1])

        ep=[]
        midpts=[]
        i=1
        j=5
        for k in range(9):
            ep.append((p0[0]+i*v1[0]/6.0+j*v2[0]/6.0, p0[1]+i*v1[1]/6.0+j*v2[1]/6.0))
            i=i+2
            if i==7:
                i=1
                j=j-2

        rad= ptdst(v1,(0.0,0.0))/6.0
        cs=[]
        hsvcs=[]
        den=2

        for i,p in enumerate(ep):
            if p[0]>rad and p[0]<W-rad and p[1]>rad and p[1]<H-rad:

                #valavg=val[int(p[1]-rad/3):int(p[1]+rad/3),int(p[0]-rad/3):int(p[0]+rad/3)]
                #mask=cv.CreateImage(cv.GetDims(valavg), 8, 1 )

                print "p",p
                p = (int(round(p[0])), int(round(p[1])))
                print "p",p
                print "sg",sg
                rad = int(rad)
                print "rad",rad
                col=cv.Avg(sgc[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
                col=cv.Avg(sgc[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
                cv.Circle(sg, p, rad, col,-1)
                if i==4:
                    cv.Circle(sg, p, rad, (0,255,255),2)
                else:
                    cv.Circle(sg, p, rad, (255,255,255),2)

                hueavg= cv.Avg(hue[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])
                satavg= cv.Avg(sat[int(p[1]-rad/den):int(p[1]+rad/den),int(p[0]-rad/den):int(p[0]+rad/den)])

                cv.PutText(sg, `int(hueavg[0])`, (p[0]+70,p[1]), ff,(255,255,255))
                cv.PutText(sg, `int(satavg[0])`, (p[0]+70,p[1]+10), ff,(255,255,255))

                if extract:
                    cs.append(col)
                    hsvcs.append((hueavg[0],satavg[0]))

        if extract:
            extract= not extract
            colors[selected]=cs
            hsvs[selected]=hsvcs
            selected=min(selected+1,5)

    #draw faces of hte extracted cubes
    x=20
    y=20
    s=13
    for i in range(6):
        if not colors[i]: 
            x+=3*s+10
            continue
        #draw the grid on top
        cv.Rectangle(sg, (x-1,y-1), (x+3*s+5,y+3*s+5), (0,0,0),-1)
        x1,y1=x,y
        x2,y2=x1+s,y1+s
        for j in range(9):
            if didassignments:
                cv.Rectangle(sg, (x1,y1), (x2,y2), mycols[assigned[i][j]],-1)
            else:
                cv.Rectangle(sg, (x1,y1), (x2,y2), colors[i][j],-1)
            x1+=s+2
            if j==2 or j==5: 
                x1=x
                y1+=s+2
            x2,y2=x1+s,y1+s
        x+=3*s+10

    #draw the selection rectangle
    x=20
    y=20
    for i in range(selected):x+=3*s+10
    cv.Rectangle(sg, (x-1,y-1), (x+3*s+5,y+3*s+5), (0,0,255),2)

    lastdetected= len(li)
    #swapping for LK
    prev_grey, grey = grey, prev_grey
    prev_pyramid, pyramid = pyramid, prev_pyramid
    #draw img


    #cv.CvtColor(sg,sg2,cv.CV_RGB2HSV)
    #cv.Split(sg2, hue, sat, val, None)

    #cv.Smooth(sg,sg,cv.CV_GAUSSIAN, 5)
    cv.ShowImage("Fig",sg)

    counter+=1 #global counter
    # handle events
    c = cv.WaitKey(10) % 0x100
    if c == 27: break #ESC

    # processing depending on the character
    if 32 <= c and c < 128:
      cc = chr(c).lower()
      if cc== ' ':
        #EXTRACT COLORS!!!
        extract=True
      if cc=='r':
        #reset
        extract=False
        selected=0
        colors=[[] for i in range(6)]
        didassignments=False
        assigned=[[-1 for i in range(9)] for j in range(6)]
        for i in range(6):
            assigned[i][4]=i    
        didassignments=False

      if cc=='n':
        selected=selected-1
        if selected<0: selected=5
      if cc=='m':
        selected=selected+1
        if selected>5: selected=0

      if cc=='b':
        onlyBlackCubes=not onlyBlackCubes
      if cc=='d':
        dodetection=not dodetection
      if cc=='q':
        print hsvs
      if cc=='p':
        #process!!!!
        processColors()
      if cc=='u':
        didassignments=not didassignments
      if cc=='s':
        cv.SaveImage("C:\\code\\img\\pic"+`time()`+".jpg",sgc)


cv.DestroyWindow("Fig")