我正在尝试在以前的AI模型中添加一个lstm层。 在添加模型时,将批次训练到我的AI时出现此错误。
在没有LSTM的早期版本中,错误不存在,并且工作正常。
输入的批次大小100与隐藏的[0]批次大小1不匹配。
我正在使用nn.LSTMCell
任何人都可以帮助检查我是否缺少初始化lstmcell的参数,以便它也可以接受批处理输入。
下面是我的代码...
import os
import time
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler
import torch
import torch.nn as nn
import torch.nn.functional as F
from random import random as rndm
from torch.autograd import Variable
from collections import deque
os.chdir("C:\\Users\\granthjain\\Desktop\\startup_code")
torch.set_default_tensor_type('torch.DoubleTensor')
class ReplayBuffer(object):
def __init__(self, max_size=1e6):
self.storage = []
self.max_size = max_size
self.ptr = 0
def add(self, transition):
if len(self.storage) == self.max_size:
self.storage[int(self.ptr)] = transition
else:
self.storage.append(transition)
self.ptr = (self.ptr + 1) % self.max_size
def sample(self, batch_size):
ind = np.random.randint(0, self.ptr, size=batch_size)
batch_states, batch_next_states, batch_actions, batch_rewards, batch_dones = [], [], [], [], []
for i in ind:
state, next_state, action, reward, done = self.storage[i]
if state is None:
continue
elif next_state is None:
continue
elif action is None:
continue
elif reward is None:
continue
elif done is None:
continue
batch_states.append(np.array(state, copy=False))
batch_next_states.append(np.array(next_state, copy=False))
batch_actions.append(np.array(action, copy=False))
batch_rewards.append(np.array(reward, copy=False))
batch_dones.append(np.array(done, copy=False))
return np.array(batch_states,dtype=object).astype(float), np.array(batch_next_states,dtype=object).astype(float), np.array(batch_actions,dtype=object).astype(float), np.array(batch_rewards,dtype=object).astype(float), np.array(batch_dones,dtype=object).astype(float)
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.lstm = nn.LSTMCell(state_dim, 256)
self.layer_1 = nn.Linear(256, 400)
self.layer_2 = nn.Linear(400, 300)
self.layer_3 = nn.Linear(300, action_dim)
self.hx = torch.zeros(1,256)
self.cx = torch.zeros(1,256)
self.max_action = max_action
def forward(self, x):
self.hx, self.cx = self.lstm(x, (self.hx, self.cx))
x = F.relu(self.layer_1(self.hx))
x = F.relu(self.layer_2(x))
x = self.max_action * torch.tanh(self.layer_3(x))
return x
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
# Defining the first Critic neural network
self.lstm1 = nn.LSTMCell(state_dim + action_dim, 256)
self.layer_1 = nn.Linear(256, 400)
self.layer_2 = nn.Linear(400, 300)
self.layer_3 = nn.Linear(300, 1)
# Defining the second Critic neural network
self.lstm2 = nn.LSTMCell(state_dim + action_dim, 256)
self.layer_4 = nn.Linear(256, 400)
self.layer_5 = nn.Linear(400, 300)
self.layer_6 = nn.Linear(300, 1)
self.hx1 = torch.zeros(1,256)
self.cx1 = torch.zeros(1,256)
self.hx2 = torch.zeros(1,256)
self.cx2 = torch.zeros(1,256)
def forward(self, x, u):
xu = torch.cat([x, u], 1)
# Forward-Propagation on the first Critic Neural Network
self.hx1,self.cx1 = self.lstm(xu, (self.hx1, self.cx1))
x1 = F.relu(self.layer_1(self.hx1))
x1 = F.relu(self.layer_2(x1))
x1 = self.layer_3(x1)
# Forward-Propagation on the second Critic Neural Network
self.hx2,self.cx2 = self.lstm(xu, (self.hx2, self.cx2))
x2 = F.relu(self.layer_4(self.hx2))
x2 = F.relu(self.layer_5(x2))
x2 = self.layer_6(x2)
return x1, x2
def Q1(self, x, u):
xu = torch.cat([x, u], 1)
self.hx1,self.cx1 = self.lstm(xu, (self.hx1, self.cx1))
x1 = F.relu(self.layer_1(self.hx1))
x1 = F.relu(self.layer_2(x1))
x1 = self.layer_3(x1)
return x1
# Selecting the device (CPU or GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Building the whole Training Process into a class
class TD3(object):
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters())
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = torch.optim.Adam(self.critic.parameters())
self.max_action = max_action
def reset_hxcx(self):
self.actor.cx = torch.zeros(1,256)
self.actor.hx = torch.zeros(1,256)
self.actor_target.cx = torch.zeros(1,256)
self.actor_target.hx = torch.zeros(1,256)
self.critic.cx1 = torch.zeros(1,256)
self.critic.cx2 = torch.zeros(1,256)
self.critic.hx1 = torch.zeros(1,256)
self.critic.hx2 = torch.zeros(1,256)
self.critic_target.cx1 = torch.zeros(1,256)
self.critic_target.cx2 = torch.zeros(1,256)
self.critic_target.hx1 = torch.zeros(1,256)
self.critic_target.hx2 = torch.zeros(1,256)
def select_action(self, state):
print("state =", type(state))
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=50, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2):
for it in range(iterations):
# Step 4: We sample a batch of transitions (s, s’, a, r) from the memory
batch_states, batch_next_states, batch_actions, batch_rewards, batch_dones = replay_buffer.sample(batch_size)
batch_states=batch_states.astype(float)
batch_next_states=batch_next_states.astype(float)
batch_actions=batch_actions.astype(float)
batch_rewards=batch_rewards.astype(float)
batch_dones=batch_dones.astype(float)
state = torch.from_numpy(batch_states)
next_state = torch.from_numpy(batch_next_states)
action = torch.from_numpy(batch_actions)
reward = torch.from_numpy(batch_rewards)
done = torch.from_numpy(batch_dones)
# print("actor cx:",self.actor.cx)
# print("actor hx:",self.actor.hx)
# print("actor_target cx:",self.actor_target.cx)
# print("actor_target cx:",self.actor_target.cx)
# print("self.critic.cx1:",self.critic.cx1)
# print("self.critic.cx2",self.critic.cx2)
# print("self.critic.hx1:",self.critic.hx1)
# print("self.critic.hx2:",self.critic.hx2)
# print("self.critic_target.cx1:",self.critic_target.cx1)
# print("self.critic_target.hx1",self.critic_target.hx1)
# print("self.critic_target.cx2:",self.critic_target.cx2)
# print("self.critic_target.hx2:",self.critic_target.hx2)
# Step 5: From the next state s’, the Actor target plays the next action a’
next_action = self.actor_target(next_state)
# Step 6: We add Gaussian noise to this next action a’ and we clamp it in a range of values supported by the environment
noise = torch.Tensor(batch_actions).data.normal_(0, policy_noise).to(device)
noise = noise.clamp(-noise_clip, noise_clip)
next_action = (next_action + noise).clamp(-self.max_action, self.max_action)
# Step 7: The two Critic targets take each the couple (s’, a’) as input and return two Q-values Qt1(s’,a’) and Qt2(s’,a’) as outputs
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
# Step 8: We keep the minimum of these two Q-values: min(Qt1, Qt2)
target_Q = torch.min(target_Q1, target_Q2).double()
# Step 9: We get the final target of the two Critic models, which is: Qt = r + γ * min(Qt1, Qt2), where γ is the discount factor
done = done.resize_((done.shape[0],1))
reward = reward.resize_((reward.shape[0],1))
target_Q = reward + ((1 - done) * discount * target_Q).detach()
# Step 10: The two Critic models take each the couple (s, a) as input and return two Q-values Q1(s,a) and Q2(s,a) as outputs
current_Q1, current_Q2 = self.critic(state, action)
# Step 11: We compute the loss coming from the two Critic models: Critic Loss = MSE_Loss(Q1(s,a), Qt) + MSE_Loss(Q2(s,a), Qt)
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
# Step 12: We backpropagate this Critic loss and update the parameters of the two Critic models with a SGD optimizer
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Step 13: Once every two iterations, we update our Actor model by performing gradient ascent on the output of the first Critic model
if it % policy_freq == 0:
actor_loss = -self.critic.Q1(state, self.actor(state)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Step 14: Still once every two iterations, we update the weights of the Actor target by polyak averaging
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
# Step 15: Still once every two iterations, we update the weights of the Critic target by polyak averaging
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
# Making a save method to save a trained model
def save(self, filename, directory):
torch.save(self.actor.state_dict(), '%s/%s_actor.pth' % (directory, filename))
torch.save(self.critic.state_dict(), '%s/%s_critic.pth' % (directory, filename))
# Making a load method to load a pre-trained model
def load(self, filename, directory):
self.actor.load_state_dict(torch.load('%s/%s_actor.pth' % (directory, filename)))
self.critic.load_state_dict(torch.load('%s/%s_critic.pth' % (directory, filename)))
#set the parameters
start_timesteps = 1e3 # Number of iterations/timesteps before which the model randomly chooses an action, and after which it starts to use the policy network
eval_freq = 5e1 # How often the evaluation step is performed (after how many timesteps)
max_timesteps = 5e3 # Total number of iterations/timesteps
save_models = True # Boolean checker whether or not to save the pre-trained model
expl_noise = 0.1 # Exploration noise - STD value of exploration Gaussian noise
batch_size = 100 # Size of the batch
discount = 0.99 # Discount factor gamma, used in the calculation of the total discounted reward
tau = 0.005 # Target network update rate
policy_noise = 0.2 # STD of Gaussian noise added to the actions for the exploration purposes
noise_clip = 0.5 # Maximum value of the Gaussian noise added to the actions (policy)
policy_freq = 2 # Number of iterations to wait before the policy network (Actor model) is updated
state_dim = 3
action_dim = 3
max_action = 1
idx = 0
class env1:
def __init__(self,state_dim,action_dim,data):
self.state_dim = state_dim
self.state = torch.zeros(self.state_dim)
self.state[state_dim-1]=1000.0
self.next_state = torch.zeros(self.state_dim)
self.next_state[state_dim-1] = 1000.0
self.action_dim = action_dim
self.data = data
self.idx = 0
self.count = 0
self._max_episode_steps = 200
self.state[1] = self.data[self.idx]
self.next_state[1] = self.data[self.idx]
def reset(self):
self.next_state = torch.zeros(self.state_dim)
self.next_state[state_dim-1]=1000.0
self.state = torch.zeros(self.state_dim)
self.state[state_dim-1]=1000.0
self.state[1] = self.data[self.idx]
self.next_state[1] = self.data[self.idx]
self.count = 0
ch = self.state[0]
cp = self.state[1]
cc = self.state[2]
st = torch.tensor([ch,cp,cc])
return st
def step(self,action):
done = False
act_t = torch.argmax(action)
self.idx += 1
if(act_t==0):
num_s = int(self.state[2]/self.state[1])
self.next_state[0] += num_s
self.next_state[2] = self.state[2]%self.state[1]
self.next_state[1] = self.data[self.idx]
elif(act_t==1):
self.next_state[1] = self.data[self.idx]
elif(act_t==2):
self.next_state[2] = self.state[2]+ self.state[1]*self.state[0]
self.next_state[0] = 0
self.next_state[1] = self.data[self.idx]
reward = self.next_state[2] - self.state[2] + self.next_state[1]*self.next_state[0] - self.state[1]*self.state[0] -1
self.state[0] = self.next_state[0]
self.state[1] = self.next_state[1]
self.state[2] = self.next_state[2]
ch = self.state[0]
cp = self.state[1]
cc = self.state[2]
st = torch.tensor([ch,cp,cc])
self.count = (self.count + 1)%100
if(self.count==0):
done = True
return st, reward, done
policy = TD3(state_dim, action_dim, max_action)
#Create the environment
data = pd.read_csv('PAGEIND.csv')
data = data['Close']
data = np.array(data).reshape(-1,1)
max_timesteps = data.shape[0]
sc = StandardScaler()
data = sc.fit_transform(data)
data = torch.DoubleTensor(data)
env = env1(state_dim,action_dim,data)
replay_buffer = ReplayBuffer()
#init training variables
total_timesteps = 0
timesteps_since_eval = 0
episode_num = 0
done = True
t0 = time.time()
# We start the main loop over 500,000 timesteps
while total_timesteps < max_timesteps:
# If the episode is done
if done:
# If we are not at the very beginning, we start the training process of the model
if total_timesteps != 0:
print("Total Timesteps: {} Episode Num: {} Reward: {}".format(total_timesteps, episode_num, episode_reward))
policy.train(replay_buffer, episode_timesteps, batch_size, discount, tau, policy_noise, noise_clip, policy_freq)
# When the training step is done, we reset the state of the environment
obs = env.reset()
policy.reset_hxcx()
# Set the Done to False
done = False
# Set rewards and episode timesteps to zero
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Before 1000 timesteps, we play random actions
if total_timesteps < 0.8*max_timesteps:
#random action
actn = torch.randn(action_dim)
action = torch.zeros(action_dim)
action[torch.argmax(actn)] = 1
else: # After 1000 timesteps, we switch to the model
action = policy.select_action(torch.tensor(obs))
# If the explore_noise parameter is not 0, we add noise to the action and we clip it
if expl_noise != 0:
print("policy action:",action)
actn = (action + torch.randn(action_dim))
action = torch.zeros(action_dim)
action[torch.argmax(actn)] = 1
# The agent performs the action in the environment, then reaches the next state and receives the reward
new_obs, reward, done = env.step(action)
# We check if the episode is done
done_bool = 0 if episode_timesteps + 1 == env._max_episode_steps else float(done)
# We increase the total reward
episode_reward += reward
# We store the new transition into the Experience Replay memory (ReplayBuffer)
replay_buffer.add((obs, new_obs, action, reward, done_bool))
# We update the state, the episode timestep, the total timesteps, and the timesteps since the evaluation of the policy
obs = new_obs
episode_timesteps += 1
total_timesteps += 1
timesteps_since_eval += 1
及以下是错误消息:
policy.train(replay_buffer, episode_timesteps, batch_size, discount, tau, policy_noise, noise_clip, policy_freq)
File "C:/Users/granthjain/Desktop/startup_code/td3_lstm_try.py", line 196, in train
next_action = self.actor_target(next_state)
File "C:\Users\granthjain\Anaconda3_1\lib\site-packages\torch\nn\modules\module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "C:/Users/granthjain/Desktop/startup_code/td3_lstm_try.py", line 79, in forward
self.hx, self.cx = self.lstm(x, (self.hx, self.cx))
File "C:\Users\granthjain\Anaconda3_1\lib\site-packages\torch\nn\modules\module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "C:\Users\granthjain\Anaconda3_1\lib\site-packages\torch\nn\modules\rnn.py", line 708, in forward
self.check_forward_hidden(input, hx[0], '[0]')
File "C:\Users\granthjain\Anaconda3_1\lib\site-packages\torch\nn\modules\rnn.py", line 532, in check_forward_hidden
input.size(0), hidden_label, hx.size(0)))
RuntimeError: Input batch size 100 doesn't match hidden[0] batch size 1
答案 0 :(得分:0)
如果您使用零初始化单元格状态和隐藏状态,则完全不需要提供初始化,它将为您提供(默认情况下,请参见docs)。但是,如果您决定自己做,则应始终考虑批处理大小(每次迭代可能会有所不同)。
最后,nn.LSTMCell
的单元格和隐藏状态均具有形状(batch_size, hidden_size)
,而在构造器中使用形状(1, hidden_size)
对其进行了一次初始化。您必须将初始化移至forward()
,并且每次调用都从x
获取批处理大小,而批处理大小应仅为x.shape[0]
请注意,您正在使用nn.LSTMCell
,它只是一个单元格计算。一次使用没有任何意义,请确保这对您有用。也许只是nn.LSTM
?