我正在与Bert一起进行多标签文本分类任务。
以下是用于生成可迭代数据集的代码。
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
train_set = TensorDataset(X_train_id,X_train_attention, y_train)
test_set = TensorDataset(X_test_id,X_test_attention,y_test)
train_dataloader = DataLoader(
train_set,
sampler = RandomSampler(train_set),
drop_last=True,
batch_size=13
)
test_dataloader = DataLoader(
test_set,
sampler = SequentialSampler(test_set),
drop_last=True,
batch_size=13
)
以下是训练集的尺寸:
在[]
print(X_train_id.shape)
print(X_train_attention.shape)
print(y_train.shape)
出[]
torch.Size([262754, 512])
torch.Size([262754, 512])
torch.Size([262754, 34])
应该有262754行,每行512列。输出应从34个可能的标签中预测值。我将它们分为13个批次。
培训代码
optimizer = AdamW(model.parameters(), lr=2e-5)
# Training
def train(model):
model.train()
train_loss = 0
for batch in train_dataloader:
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
optimizer.zero_grad()
loss, logits = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
train_loss += loss.item()
return train_loss
# Testing
def test(model):
model.eval()
val_loss = 0
with torch.no_grad():
for batch in test_dataloader:
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
with torch.no_grad():
(loss, logits) = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
val_loss += loss.item()
return val_loss
# Train task
max_epoch = 1
train_loss_ = []
test_loss_ = []
for epoch in range(max_epoch):
train_ = train(model)
test_ = test(model)
train_loss_.append(train_)
test_loss_.append(test_)
出[]
Expected input batch_size (13) to match target batch_size (442).
这是我的模型的描述:
from transformers import BertForSequenceClassification, AdamW, BertConfig
model = BertForSequenceClassification.from_pretrained(
"cl-tohoku/bert-base-japanese-whole-word-masking", # 日本語Pre trainedモデル
num_labels = 34,
output_attentions = False,
output_hidden_states = False,
)
我已经明确指出我希望批次大小为13。但是,在训练过程中pytorch会引发运行时错误
数字442甚至来自哪里?我已经明确指出,我希望每个批次的大小为13行。
我已经确认每个批次的input_id的尺寸为[13,512],注意张量的尺寸为[13,512],标签的尺寸为[13,34]。
我曾尝试在初始化DataLoader时探入并使用442的批处理大小,但是在一次批处理迭代之后,它抛出了另一个Pytorch Value Error Expected: input batch size does not match target batch size
,这次显示:
ValueError: Expected input batch_size (442) to match target batch_size (15028).
为什么批量大小不断变化?这个数字15028到底是哪里来的?
以下是我浏览过的一些答案,但是在应用到我的源代码时没有运气:
Pytorch CNN error: Expected input batch_size (4) to match target batch_size (64)
先谢谢了。非常感谢您的支持:)
答案 0 :(得分:0)
根据documentation,该模型似乎无法处理多目标方案:
标签(形状为(batch_size,)的Torch.LongTensor,可选)–用于计算序列分类/回归损失的标签。索引应位于[0,...,config.num_labels-1]中。如果config.num_labels == 1,则计算回归损失(均方差);如果config.num_labels> 1,则分类损失(交叉熵)。
因此,您需要准备标签,使其形状为batch_size
:torch.Size([batch_size])
,且类索引的范围为[0, ..., config.num_labels - 1]
,就像原始pytorch
的{ {3}}(请参阅示例部分)。