ValueErrorTraceback(most recent call last) <ipython-input-48-6571c3f05123> in <module> 37 _, domain_pred = model(X_t, grl_lambda) 38 #Calculating the domain loss for target data ---> 39 loss_t_domain = loss_fn_domain(domain_pred, y_t_domain) 40 # Calculating total loss 41 loss = loss_t_domain + loss_s_domain + loss_s_label ValueError: Expected input batch_size (633) to match target batch_size (1024).
我收到以下代码的错误消息:
class DACNN(nn.Module):
def __init__(self):
super().__init__()
self.feature_extractor = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=5),
nn.BatchNorm2d(64), nn.MaxPool2d(2),
nn.ReLU(True),
nn.Conv2d(64, 50, kernel_size=5),
nn.BatchNorm2d(50), nn.Dropout2d(), nn.MaxPool2d(2),
nn.ReLU(True),
)
self.class_classifier = nn.Sequential(
nn.Linear(50 * 4 * 4, 100), nn.BatchNorm1d(100), nn.Dropout2d(),
nn.ReLU(True),
nn.Linear(100, 100), nn.BatchNorm1d(100),
nn.ReLU(True),
nn.Linear(100, 10),
nn.LogSoftmax(dim=1),
)
self.domain_classifier = nn.Sequential(
nn.Linear(50 * 4 * 4, 100), nn.BatchNorm1d(100),
nn.ReLU(True),
nn.Linear(100, 2),
nn.LogSoftmax(dim=1),
)
def forward(self, x, grl_lambda=1.0):
x = x.expand(x.data.shape[0], 3, image_size, image_size)
features = self.feature_extractor(x)
features = features.view(-1,50 * 4 * 4)
reverse_features = GradientReversalFn.apply(features, grl_lambda)
class_pred = self.class_classifier(features)
# Giving features that are passed through GRL to domain classifier
domain_pred = self.domain_classifier(reverse_features)
return class_pred, domain_pred
请帮助我解决这个问题。