我正在Google colab上训练pytorch神经网络,以对总共29个类的符号语言字母表进行分类。
我们一直在通过更改各种参数来修复代码,但是无论如何它还是行不通的。
transform = transforms.Compose([
#gray scale
transforms.Grayscale(),
#resize
transforms.Resize((128,128)),
#converting to tensor
transforms.ToTensor(),
#normalize
transforms.Normalize( (0.1307,), (0.3081,)),
])
data_dir = 'data/train/asl_alphabet_train'
#dataset
full_dataset = datasets.ImageFolder(root=data_dir, transform=transform)
#train & test
train_size = int(0.8 * len(full_dataset))
test_size = len(full_dataset) - train_size
#splitting
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size])
trainloader = torch.utils.data.DataLoader(train_dataset , batch_size = 4, shuffle = True )
testloader = torch.utils.data.DataLoader(test_dataset , batch_size = 4, shuffle = False )
#neural net architecture
Net(
(conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fc1): Linear(in_features=32768, out_features=128, bias=True)
(fc2): Linear(in_features=128, out_features=29, bias=True)
(dropout): Dropout(p=0.5)
)
loss_fn = nn.CrossEntropyLoss()
#optimizer
opt = optim.SGD(model.parameters(), lr=0.01)
def train(model, train_loader, optimizer, loss_fn, epoch, device):
#telling pytorch that training mode is on
model.train()
loss_epoch_arr = []
#epochs
for e in range(epoch):
# bach_no, data, target
for batch_idx, (data, target) in enumerate(train_loader):
#moving to GPU
#data, target = data.to(device), target.to(device)
#Making gradints zero
optimizer.zero_grad()
#generating output
output = model(data)
#calculating loss
loss = loss_fn(output, target)
#backward propagation
loss.backward()
#stepping optimizer
optimizer.step()
#printing at each 10th epoch
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
#de-allocating memory
del data,target,output
#torch.cuda.empty_cache()
#appending values
loss_epoch_arr.append(loss.item())
#plotting loss
plt.plot(loss_epoch_arr)
plt.show()
train(model, trainloader , opt, loss_fn, 10, device)
ValueError:预期输入batch_size(1)匹配目标batch_size (4)。
我们是pytorch的初学者,试图找出问题所在。
答案 0 :(得分:0)
此错误的最可能原因与nn.Linear函数中的in_features值有关 您尚未提供完整的代码。
一种检查方法是在转发功能中添加以下几行(在x.view之前:
print('x_shape:',x.shape)
结果的格式为 [a,b,c,d] 。 in_features值应等于 b * c * d