卷积和递归神经网络

时间:2019-07-13 07:01:51

标签: machine-learning deep-learning

我如何结合卷积神经网络和递归神经网络进行图像分割?

我的模型摘要:

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_34 (InputLayer)           (None, 128, 128, 3)  0                                            
__________________________________________________________________________________________________
conv2d_277 (Conv2D)             (None, 128, 128, 16) 448         input_34[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_109 (MaxPooling2D (None, 64, 64, 16)   0           conv2d_277[0][0]                 
__________________________________________________________________________________________________
conv2d_278 (Conv2D)             (None, 64, 64, 32)   4640        max_pooling2d_109[0][0]          
__________________________________________________________________________________________________
max_pooling2d_110 (MaxPooling2D (None, 32, 32, 32)   0           conv2d_278[0][0]                 
__________________________________________________________________________________________________
conv2d_279 (Conv2D)             (None, 32, 32, 64)   18496       max_pooling2d_110[0][0]          
__________________________________________________________________________________________________
max_pooling2d_111 (MaxPooling2D (None, 16, 16, 64)   0           conv2d_279[0][0]                 
__________________________________________________________________________________________________
conv2d_280 (Conv2D)             (None, 16, 16, 128)  73856       max_pooling2d_111[0][0]          
__________________________________________________________________________________________________
max_pooling2d_112 (MaxPooling2D (None, 8, 8, 128)    0           conv2d_280[0][0]                 
__________________________________________________________________________________________________
conv2d_281 (Conv2D)             (None, 8, 8, 256)    295168      max_pooling2d_112[0][0]          
__________________________________________________________________________________________________
up_sampling2d_109 (UpSampling2D (None, 16, 16, 256)  0           conv2d_281[0][0]                 
__________________________________________________________________________________________________
concatenate_109 (Concatenate)   (None, 16, 16, 384)  0           up_sampling2d_109[0][0]          
                                                                 conv2d_280[0][0]                 
__________________________________________________________________________________________________
conv2d_282 (Conv2D)             (None, 16, 16, 128)  442496      concatenate_109[0][0]            
__________________________________________________________________________________________________
up_sampling2d_110 (UpSampling2D (None, 32, 32, 128)  0           conv2d_282[0][0]                 
__________________________________________________________________________________________________
concatenate_110 (Concatenate)   (None, 32, 32, 192)  0           up_sampling2d_110[0][0]          
                                                                 conv2d_279[0][0]                 
__________________________________________________________________________________________________
conv2d_283 (Conv2D)             (None, 32, 32, 64)   110656      concatenate_110[0][0]            
__________________________________________________________________________________________________
up_sampling2d_111 (UpSampling2D (None, 64, 64, 64)   0           conv2d_283[0][0]                 
__________________________________________________________________________________________________
concatenate_111 (Concatenate)   (None, 64, 64, 96)   0           up_sampling2d_111[0][0]          
                                                                 conv2d_278[0][0]                 
__________________________________________________________________________________________________
conv2d_284 (Conv2D)             (None, 64, 64, 32)   27680       concatenate_111[0][0]            
__________________________________________________________________________________________________
up_sampling2d_112 (UpSampling2D (None, 128, 128, 32) 0           conv2d_284[0][0]                 
__________________________________________________________________________________________________
concatenate_112 (Concatenate)   (None, 128, 128, 48) 0           up_sampling2d_112[0][0]          
                                                                 conv2d_277[0][0]
__________________________________________________________________________________________________
conv2d_285 (Conv2D)             (None, 128, 128, 16) 6928        concatenate_112[0][0]            
__________________________________________________________________________________________________
conv2d_286 (Conv2D)             (None, 128, 128, 1)  17          conv2d_285[0][0]                 
__________________________________________________________________________________________________
lambda_49 (Lambda)              (16384, 1, 1)        0           conv2d_286[0][0]                 
__________________________________________________________________________________________________
lstm_28 (LSTM)                  (16384, 1)           12          lambda_49[0][0]                  
__________________________________________________________________________________________________
dense_26 (Dense)                (16384, 1)           2           lstm_28[0][0]                    
__________________________________________________________________________________________________
lambda_50 (Lambda)              (128, 128, 1)        0           dense_26[0][0]                   
==================================================================================================
Total params: 980,399
Trainable params: 980,399
Non-trainable params: 0      

我想将卷积神经网络的输出作为递归神经网络的输入...但是它在此行model = keras.models.Model(inputs, outputs)中显示错误 error:```AttributeError:'tuple'对象没有属性'ndim'


0 个答案:

没有答案