循环神经网络实施

时间:2016-10-07 06:20:55

标签: c neural-network recurrent-neural-network

我正试图在C中实现一个循环神经网络,但它不起作用。我在网上看过一些文件,但我不了解复杂的数学知识。所以我调整了多层感知器的计算。

在几个学习步骤中,我的网络输出是一个数字,但在输出变为"不是数字" (-1,#IND00)。

1。计算

我的第一个问题是计算值,错误和重量变化。

我通过以下方式计算两个神经元N1->N2之间的前向链接:

  • 正面传球:(value of N2) += (value of N1) * (weight of link N1->N2)
  • 向后传递:(error of N1) += (error of N2) * (weight of link N1->N2)和输出神经元(error) = (value of neuron) - (target output)
  • 体重变化:(new weight) = (old weight) - derivative(value of N2) * (error of N2) * (value of N1) * learning_rate

在每个神经元中,我存储神经元的先前值,以及在前一个前向和后向传递期间计算的神经元的先前误差,因为在前向链路的相同传递期间不能计算循环链路。 / p>

我通过以下方式计算两个神经元N2->N1之间的循环链接:

  • 正向传递:(value of N1) += (previous value of N2) * (weight of link N2->N1)并且所有前向和循环链接的N1的最终值然后在sigmoid函数(tanh)中传递,输出神经元除外
  • 向后传递:(error of N2) += (previous error of N1) * (weight of link N2->N1)
  • 体重变化:(new weight) = (old weight) - derivative(value of N1) * (error of N1) * (previous value of N2) * learning_rate

我不知道这个计算是否正确并且可以导致工作网络。

2。多层感知器。

我的第二个问题是当我禁用循环链接的计算时,我的网络应该像多层感知器一样工作。但是,即使我的网络学习,它的性能也很差,平均需要的训练周期比我在互联网上找到的多层感知器要多。所以我的实施有问题。

还有一个奇怪的现象,我通过将神经元的误差乘以进入链接/突触的权重来反向传播错误,并将此产品添加到链接/突触之前的神经元错误中。就像我在互联网上发现的感知器一样。但是当我添加错误而不将其与权重相乘时,网络效果更好,并且具有与在互联网上发现的感知器相同的顺序的性能。

3。源代码。

这是源代码,第一个文件是我的实现,主要功能是测试我的网络,而不是我在互联网上找到的多层感知器。感知器在第二个文件中定义:mlp.h。

重复链接的计算被禁用,因此它应该像多层感知器一样工作。如果您不想阅读整个代码,可以查看函数rnnset()rnnsetstart()rnnlearn(),以查看前向和后向传递,以及在这3个函数中,重复链接被禁用(注释行/块)。必须在rnnsetstart()之前调用rnnset(),以便将最后一个前向传递的值存储在神经元变量value_prev中。

#include <stdio.h>
#include <time.h>
#include <math.h>
#include <malloc.h>
#include <stdlib.h>

#include "mlp.h"


typedef struct _neuron NEURON;
struct _neuron {
  int layer;

  double * weight;
  int nbsynapsesin;
  NEURON ** synapsesin;
  double bias;

  double value;
  double value_prev;
  double error;
  double error_prev;
};

typedef struct _rnn RNN;
struct _rnn {
  int * layersize;

  int nbneurons;
  NEURON * n;
};

typedef struct _config CONFIG;
struct _config {
  int nbneurons;
  int * layersize;
  int nbsynapses;
  int * synapses;
};




CONFIG * createconfig(int * layersize) {
  CONFIG * conf = (CONFIG*)malloc(sizeof(CONFIG));
  int i;
  conf->nbneurons = 0;
  for(i=1; i<layersize[0]+1; i++) conf->nbneurons += layersize[i];
  conf->layersize = (int*)malloc((layersize[0]+1)*sizeof(int));
  for(i=0; i<layersize[0]+1; i++) conf->layersize[i] = layersize[i];

  conf->nbsynapses = 0;
  for(i=1; i<layersize[0]; i++) conf->nbsynapses += layersize[i] * layersize[i+1]; 
  conf->nbsynapses *= 2;

  conf->synapses = (int*)malloc(2*conf->nbsynapses*sizeof(int));

  // creation of the synapses:
  int j,k=0,l,k2=0,k3=0;
  for(i=1;i<layersize[0];i++) {
    k3 += layersize[i];
    for(j=0; j<layersize[i]; j++) { 
      for(l=0; l<layersize[i+1]; l++) {
        // forward link/synapse:
        conf->synapses[k] = k2+j;
        k++;
        conf->synapses[k] = k3+l;
        k++;
        // Recurrent link/synapse:
        conf->synapses[k] = k3+l;
        k++;
        conf->synapses[k] = k2+j;
        k++;

      }
    }
    k2 += layersize[i];
  }
  return conf;
}

void freeconfig(CONFIG* conf) {
  free(conf->synapses);
  free(conf->layersize);
  free(conf);
}





RNN * creaternn(CONFIG * conf) {

  RNN * net = (RNN*)malloc(sizeof(RNN));
  net->nbneurons = conf->nbneurons;
  net->layersize = (int*)malloc((conf->layersize[0]+1)*sizeof(int));
  int i;
  for(i=0; i<conf->layersize[0]+1; i++) net->layersize[i] = conf->layersize[i];

  net->n = (NEURON*)malloc(conf->nbneurons*sizeof(NEURON));

  int j=0,k=0;
  for(i=0; i<conf->nbneurons; i++) {
    if(k==0) { k = conf->layersize[j+1]; j++; }
    net->n[i].layer = j-1;
    net->n[i].nbsynapsesin = 0; 
    k--;
  }

  k=0;
  for(i=0; i<conf->nbsynapses; i++) {
    k++;
    net->n[conf->synapses[k]].nbsynapsesin++;
    k++;
  }

  for(i=0; i<conf->nbneurons; i++) {
    net->n[i].weight = (double*)malloc(net->n[i].nbsynapsesin*sizeof(double));
    net->n[i].synapsesin = (NEURON**)malloc(net->n[i].nbsynapsesin*sizeof(NEURON*));
    net->n[i].nbsynapsesin = 0;
  }

  // Link the incoming synapses with the neurons:
  k=0;
  for(i=0; i<conf->nbsynapses; i++) {
    k++;
    net->n[conf->synapses[k]].synapsesin[net->n[conf->synapses[k]].nbsynapsesin] = &(net->n[conf->synapses[k-1]]);
    net->n[conf->synapses[k]].nbsynapsesin++;
    k++;
  }

  // Initialization of the values, errors, and weights:
  for(i=0; i<net->nbneurons; i++) {
    for(j=0; j<net->n[i].nbsynapsesin; j++) {
      net->n[i].weight[j] = 1.0 * (double)rand() / RAND_MAX - 1.0/2;
    }
    net->n[i].bias = 1.0 * (double)rand() / RAND_MAX - 1.0/2;
    net->n[i].value = 0.0;
    net->n[i].value_prev = 0.0;
    net->n[i].error_prev = 0.0;
    net->n[i].error = 0.0;
  }

  return net;
}


void freernn(RNN * net) {
  int i;
  for(i=0; i<net->nbneurons; i++) {
    free(net->n[i].weight);
    free(net->n[i].synapsesin);
  }
  free(net->n);
  free(net->layersize);
  free(net);
}

void rnnget(RNN * net, double * out) {
  int i,k=0;
  for(i=net->nbneurons-1; i>net->nbneurons-net->layersize[net->layersize[0]]-1; i--) { out[k] = net->n[i].value; k++; }
}

void rnnset(RNN * net, double * in) {
  int i,j,k;
  double v;

  NEURON *ni,*nj;
  // For each neuron:
  for(i=0; i<net->nbneurons; i++) {
    ni = &(net->n[i]);
    if(i<net->layersize[1]) ni->value = in[i]; else ni->value = ni->bias;
    // For each incoming synapse:
    for(j=0; j<ni->nbsynapsesin; j++) {
      nj = ni->synapsesin[j];
      // If it is a forward link/synapse:
      if(ni->layer > nj->layer) ni->value +=  nj->value * ni->weight[j];
      // Uncomment the following line to activate reccurent links computation:
      //else ni->value += nj->value_prev * ni->weight[j];
    }
    // If NOT the output layer, then tanh the value:
    if(ni->layer != net->layersize[0]-1) ni->value = tanh(ni->value);
  }
}

void rnnsetstart(RNN * net) {
  int i,j;

  NEURON *ni,*nj;
  // For each neuron, update value_prev:
  for(i=0; i<net->nbneurons; i++) {
    ni = &(net->n[i]);
    // If NOT the output layer, then the value is already computed by tanh:
    if(ni->layer != net->layersize[0]-1) {
      ni->value_prev = ni->value;
    } else {
      ni->value_prev = tanh(ni->value);
    }
  }
}

void rnnlearn(RNN * net, double * out, double learningrate) {
  int i,j,k;
  k=0;

  NEURON *ni,*nj;
  // Initialize error to zero for the output layer:
  for(i=net->nbneurons-1; i>=net->nbneurons-net->layersize[net->layersize[0]]; i--) net->n[i].error = 0.0;

  // Compute the error for output neurons:
  for(i=net->nbneurons-1; i>=0; i--) {
    ni = &(net->n[i]);
    // If ni is an output neuron, update the error:
    if(ni->layer == net->layersize[0]-1) {
      ni->error += ni->value - out[k];
      k++;
    } else {
      ni->error = 0.0;
    }
    // Uncomment the following block to activate reccurent links computation:
    /*
    // For each incoming synapse from output layer:
    for(j=0; j<ni->nbsynapsesin; j++) {
      nj = ni->synapsesin[j];
      // If neuron nj is in output layer, then update the error:
      if(nj->layer == net->layersize[0]-1) nj->error += ni->error_prev * ni->weight[j];
    }
    */
  }

  // Compute error for all other neurons:
  for(i=net->nbneurons-1; i>=0; i--) {
    ni = &(net->n[i]);
    // For each input synapse NOT from output layer:
    for(j=0; j<ni->nbsynapsesin; j++) {
      nj = ni->synapsesin[j];
      // If neuron nj is NOT in output layer, then update the error:
      if(nj->layer != net->layersize[0]-1) {
        // If it is a forward link/synapse:
        if(ni->layer > nj->layer) nj->error += ni->error * ni->weight[j];
        // Uncomment the following line to activate reccurent links computation:
        //else nj->error += ni->error_prev * ni->weight[j];
      }
    }
  }

  // Update weights:
  for(i=0; i<net->nbneurons; i++) {
    ni = &(net->n[i]);
    double wchange,derivative;

    // For the output layer:
    if(ni->layer == net->layersize[0]-1) {
      derivative = ni->error * learningrate;
      // For each incoming synapse:
      for(j=0; j<ni->nbsynapsesin; j++) {
        nj = ni->synapsesin[j];
        wchange = derivative;
        // If it is a forward link/synapse:
        if(ni->layer > nj->layer) wchange *= nj->value;
        else wchange *= nj->value_prev;
        ni->weight[j] -= wchange;
        if(ni->weight[j] > 5) ni->weight[j] = 5;
        if(ni->weight[j] < -5) ni->weight[j] = -5;
      }
      ni->bias -= derivative;
      if(ni->bias > 5) ni->bias = 5;
      if(ni->bias < -5) ni->bias = -5;

    // For the other layers:
    } else {
      derivative = 1.0 - ni->value * ni->value;
      derivative *= ni->error * learningrate;
      // For each incoming synapse:
      for(j=0; j<ni->nbsynapsesin; j++) {
        nj = ni->synapsesin[j];
        wchange = derivative;
        // If it is a forward link/synapse:
        if(ni->layer > nj->layer) wchange *= nj->value;
        else wchange *= nj->value_prev;
        ni->weight[j] -= wchange;
      }
      ni->bias -= derivative;
    }
  }

  // Update error_prev:
  for(i=0; i<net->nbneurons; i++) net->n[i].error_prev = net->n[i].error;
}




int main() {
  srand(time(NULL));
  int layersize[] = {1, 25, 12, 1};
  int layersize_netrnn[] = { 4, 1, 25, 12, 1 };

  mlp * netmlp = create_mlp (4, layersize);
  CONFIG * configrnn = createconfig(layersize_netrnn);
  RNN * netrnn = creaternn(configrnn);

  double inc,outc;

  double global_error = 1;
  double global_error2 = 1;

  int iter,i1=0,i2=0;


  //////////////////////////////////////////////////////
  // Training of the Multi-Layer Perceptron:
  //////////////////////////////////////////////////////
  while(global_error > 0.005 && i1<1000) {

    for (iter=0; iter < 100; iter++) {
      inc = 1.0*rand()/(RAND_MAX+1.0);
      outc = inc*inc;
      set_mlp(netmlp,&inc);
      learn_mlp(netmlp,&outc,0.03);
    }

    global_error = 0;
    int k;
    for (k=0; k < 100; k++) {
      inc = 1.0*rand()/(RAND_MAX+1.0);
      outc = inc*inc;
      set_mlp(netmlp,&inc);
      get_mlp(netmlp,&outc);
      mlp_float desired_out = inc*inc;
      global_error += (desired_out - outc)*(desired_out - outc);
    }         
    global_error /= 100;
    global_error = sqrt(global_error);

    i1++;
  }

  //////////////////////////////////////////////////////
  // Training of the Recurrent Neural Network:
  //////////////////////////////////////////////////////
  while(global_error2 > 0.005 && i2<1000) {

    for (iter=0; iter < 100; iter++) {
      inc = 1.0*rand()/(RAND_MAX+1.0);
      outc = inc*inc;
      rnnsetstart(netrnn);
      rnnset(netrnn,&inc);
      double outc2;

      rnnlearn(netrnn,&outc,0.03);
    }

    global_error2 = 0;
    int k;
    for (k=0; k < 100; k++) {
      inc = 1.0*rand()/(RAND_MAX+1.0);
      outc = inc*inc;
      double desired_out = inc*inc;

      rnnsetstart(netrnn);
      rnnset(netrnn,&inc);
      rnnget(netrnn,&outc);

      global_error2 += (desired_out - outc)*(desired_out - outc);
    }
    global_error2 /= 100;
    global_error2 = sqrt(global_error2);
    if(!isnormal(global_error2)) global_error2 = 100;
    i2++;
  }

  //////////////////////////////////////////////////////
  // Test of performance for the both networks:
  //////////////////////////////////////////////////////
  global_error = 0;
  global_error2 = 0;

  int k;
  for (k=0; k < 10000; k++) {
    inc = 1.0*rand()/(RAND_MAX+1.0);
    outc = inc*inc;
    double desired_out = inc*inc;

    rnnsetstart(netrnn);
    rnnset(netrnn,&inc);
    rnnget(netrnn,&outc);
    global_error2 += (desired_out - outc)*(desired_out - outc);

    set_mlp(netmlp,&inc);
    get_mlp(netmlp,&outc);
    global_error += (desired_out - outc)*(desired_out - outc);
  }

  global_error /= 10000;
  global_error = sqrt(global_error);
  printf("\n  MLP: i: %5d    error: %f",i1,global_error);
  global_error2 /= 10000;
  global_error2 = sqrt(global_error2);
  printf("\n  RNN: i: %5d    error: %f",i2,global_error2);

  free_mlp(netmlp);
  freeconfig(configrnn);
  freernn(netrnn);

}

文件mlp.h:

typedef double mlp_float;

typedef struct {
    mlp_float *synaptic_weight;
    mlp_float *neuron_value;
    mlp_float *neuron_error_value;
    mlp_float *input_neuron;
    mlp_float *output_neuron;
    mlp_float *output_error_value;
    int *layer_index;
    int *layer_size;
    int *synapse_index;
    int layer_number;
    int neuron_number;
    int synapse_number;
    int input_layer_size;
    int output_layer_size;
} mlp;

static mlp_float MAGICAL_WEIGHT_NUMBER = 1.0f;
static mlp_float MAGICAL_LEARNING_NUMBER = 0.4f;

void reinit_mlp(mlp * network) {
int i;
for (i = 0; i < network->synapse_number; i++) {
        network->synaptic_weight[i] = /*0.001;*/MAGICAL_WEIGHT_NUMBER * (mlp_float)rand() / RAND_MAX - MAGICAL_WEIGHT_NUMBER/2;
}
}

mlp *create_mlp(int layer_number, int *layer_size) {

    mlp *network = (mlp*)malloc(sizeof * network);

    network->layer_number = layer_number;
    network->layer_size = (int*)malloc(sizeof * network->layer_size * network->layer_number);
    network->layer_index = (int*)malloc(sizeof * network->layer_index * network->layer_number);

    int i;
    network->neuron_number = 0;
    for (i = 0; i < layer_number; i++) {
        network->layer_size[i] = layer_size[i];
        network->layer_index[i] = network->neuron_number;
        network->neuron_number += layer_size[i];
    }

    network->neuron_value = (mlp_float*)malloc(sizeof * network->neuron_value * network->neuron_number);
    network->neuron_error_value = (mlp_float*)malloc(sizeof * network->neuron_error_value * network->neuron_number);

    network->input_layer_size = layer_size[0];
    network->output_layer_size = layer_size[layer_number-1];
    network->input_neuron = network->neuron_value;
    network->output_neuron = &network->neuron_value[network->layer_index[layer_number-1]];
    network->output_error_value = &network->neuron_error_value[network->layer_index[layer_number-1]];

    network->synapse_index = (int*)malloc(sizeof * network->synapse_index * (network->layer_number-1));
    network->synapse_number = 0;
    for (i = 0; i < layer_number - 1; i++) {
        network->synapse_index[i] = network->synapse_number;
        network->synapse_number += (network->layer_size[i]+1) * network->layer_size[i+1];
    }

    network->synaptic_weight = (mlp_float*)malloc(sizeof * network->synaptic_weight * network->synapse_number);


    for (i = 0; i < network->synapse_number; i++) {
        network->synaptic_weight[i] = MAGICAL_WEIGHT_NUMBER * (mlp_float)rand() / RAND_MAX - MAGICAL_WEIGHT_NUMBER/2;
    }
    return network;
}

void free_mlp (mlp *network) {
    free(network->layer_size);
    free(network->layer_index);
    free(network->neuron_value);
    free(network->neuron_error_value);
    free(network->synapse_index);
    free(network->synaptic_weight);
    free(network);
}

void set_mlp (mlp * network, mlp_float *vector) {
    if (vector != NULL) {
        int i;
        for (i = 0; i < network->input_layer_size; i++) {
            network->input_neuron[i] = vector[i];
        }
    }
    int i;
    int synapse_index;
    synapse_index = 0;
    for (i = 1; i < network->layer_number; i++) {
        int j;
        for (j = network->layer_index[i]; j < network->layer_index[i] + network->layer_size[i]; j++) {
            mlp_float weighted_sum = 0.0;
            int k;
            for (k = network->layer_index[i-1]; k < network->layer_index[i-1] + network->layer_size[i-1]; k++) {
                weighted_sum += network->neuron_value[k] * network->synaptic_weight[synapse_index];
                synapse_index++;
            }
            weighted_sum += network->synaptic_weight[synapse_index];

            synapse_index++;
            network->neuron_value[j] = weighted_sum;
            if (i != network->layer_number - 1) network->neuron_value[j] = tanh(network->neuron_value[j]);
        }
    }
}

void get_mlp (mlp *network, mlp_float *vector) {
    int i;
    for (i = 0; i < network->output_layer_size; i++) {
        vector[i] = network->output_neuron[i];
    }
}

void learn_mlp (mlp *network, mlp_float *desired_out, mlp_float learning_rate) {

    int i;
    mlp_float global_error = 0;
    int synapse_index = network->synapse_index[network->layer_number-2];

    for (i = 0; i < network->output_layer_size; i++) {
        network->output_error_value[i] = network->output_neuron[i] - desired_out[i];
        int j;
        for (j = network->layer_index[network->layer_number-2]; j < network->layer_index[network->layer_number-2] + network->layer_size[network->layer_number-2]; j++) {
            mlp_float weightChange;
            weightChange = learning_rate * network->output_error_value[i] * network->neuron_value[j];
            network->synaptic_weight[synapse_index] -= weightChange;

            if (network->synaptic_weight[synapse_index] > 5) network->synaptic_weight[synapse_index] = 5;
            if (network->synaptic_weight[synapse_index] < -5) network->synaptic_weight[synapse_index] = -5;

            synapse_index++;
        }
        mlp_float weightChange;
        weightChange = learning_rate * network->output_error_value[i];
        network->synaptic_weight[synapse_index] -= weightChange;

        if (network->synaptic_weight[synapse_index] > 5) network->synaptic_weight[synapse_index] = 5;
        if (network->synaptic_weight[synapse_index] < -5) network->synaptic_weight[synapse_index] = -5;

        synapse_index++;
    }

    for (i = network->layer_number - 2; i > 0; i--) {
        int j;
        int jj= 0;
        int synapse_index = network->synapse_index[i-1];
        for (j = network->layer_index[i]; j < network->layer_index[i] + network->layer_size[i]; j++,jj++) {
            int k;

            int synapse_index2 = network->synapse_index[i] + jj;
            network->neuron_error_value[j] = 0;
            for (k = network->layer_index[i+1]; k < network->layer_index[i+1] + network->layer_size[i+1]; k++) {
                network->neuron_error_value[j] += network->synaptic_weight[synapse_index2] * network->neuron_error_value[k];
                synapse_index2+=network->layer_size[i]+1;
            }

            for (k = network->layer_index[i-1]; k < network->layer_index[i-1] + network->layer_size[i-1]; k++) {

                mlp_float weightChange;

                weightChange = 1.0 - network->neuron_value[j] * network->neuron_value[j];
                weightChange *= network->neuron_error_value[j] * learning_rate;
                weightChange *= network->neuron_value[k];

                network->synaptic_weight[synapse_index] -= weightChange;
                synapse_index++;
            }
            mlp_float weightChange;

            weightChange = 1.0 - network->neuron_value[j] * network->neuron_value[j];
            weightChange *= network->neuron_error_value[j] * learning_rate;

            network->synaptic_weight[synapse_index] -= weightChange;

            synapse_index++;


        }
    }
}




void get_mlp_inputs (mlp *network, mlp_float *vector) {
    if (vector != NULL) {
        int i;
        for (i = 0; i < network->input_layer_size; i++) {
            vector[i] = network->input_neuron[i];
        }
    }
}

1 个答案:

答案 0 :(得分:1)

关于循环链接的计算,我终于找到了a document。如果我已经很好理解,我应该通过以下方式计算两个神经元N1<-N2之间的循环链接:

  • 正面传球:(value of N1) += (previous value of N2) * (weight of link N1<-N2)
  • 向后传递:No error backpropagation through recurrent links
  • 体重变化:(new weight) = (old weight) - derivative(value of N1) * (error of N1) * (previous value of N2) * learning_rate

现在我的经常性网络学习,但与多层感知器相比,它的性能不佳。可能是因为我试图解决的问题,这不适合经常性网络。

关于我的第二个问题,我终于发现了这个错误,我使用tanh计算了输入神经元的值,但输入神经元的值不应该改变。

这是正确的源代码:

#include <stdio.h>
#include <time.h>
#include <math.h>
#include <malloc.h>
#include <stdlib.h>

#include "mlp.h"


typedef struct _neuron NEURON;
struct _neuron {
  int layer;

  double * weight;      // table of weights for incoming synapses
  int nbsynapsesin;     // number of incoming synapses

  NEURON ** synapsesin; // table of pointer to the neurons from
                        // which are coming the synapses
  double bias;

  double value;
  double value_prev;
  double error;
  double error_prev;
};

typedef struct _rnn RNN;
struct _rnn {
  int * layersize;

  int nbneurons;
  NEURON * n;
};

typedef struct _config CONFIG;
struct _config {
  int nbneurons;
  int * layersize;
  int nbsynapses;
  int * synapses;
};




CONFIG * createconfig(int * layersize) {
  CONFIG * conf = (CONFIG*)malloc(sizeof(CONFIG));
  int i;
  conf->nbneurons = 0;
  for(i=1; i<layersize[0]+1; i++) conf->nbneurons += layersize[i];
  conf->layersize = (int*)malloc((layersize[0]+1)*sizeof(int));
  for(i=0; i<layersize[0]+1; i++) conf->layersize[i] = layersize[i];

  // Compute the number of synapses:
  conf->nbsynapses = 0;
  for(i=1; i<layersize[0]; i++) conf->nbsynapses += layersize[i] * layersize[i+1]; 
  conf->nbsynapses *= 2;

  // Allocate the table of synapses:
  conf->synapses = (int*)malloc(2*conf->nbsynapses*sizeof(int));

  // creation of the synapses:
  int j,k=0,l,k2=0,k3=0;
  for(i=1;i<layersize[0];i++) {
    k3 += layersize[i];
    for(j=0; j<layersize[i]; j++) { 
      for(l=0; l<layersize[i+1]; l++) {
        // forward link/synapse:
        conf->synapses[k] = k2+j;
        k++;
        conf->synapses[k] = k3+l;
        k++;
        // Recurrent link/synapse:
        conf->synapses[k] = k3+l;
        k++;
        conf->synapses[k] = k2+j;
        k++;

      }
    }
    k2 += layersize[i];
  }
  return conf;
}

void freeconfig(CONFIG* conf) {
  free(conf->synapses);
  free(conf->layersize);
  free(conf);
}





RNN * creaternn(CONFIG * conf) {

  RNN * net = (RNN*)malloc(sizeof(RNN));
  net->nbneurons = conf->nbneurons;
  net->layersize = (int*)malloc((conf->layersize[0]+1)*sizeof(int));
  int i;
  for(i=0; i<conf->layersize[0]+1; i++) net->layersize[i] = conf->layersize[i];

  // Allocate the neuron table of the Recurrent Neural Network:
  net->n = (NEURON*)malloc(conf->nbneurons*sizeof(NEURON));

  // Initialize some neuron values:
  int j=0,k=0;
  for(i=0; i<conf->nbneurons; i++) {
    if(k==0) { k = conf->layersize[j+1]; j++; }
    net->n[i].layer = j-1;
    net->n[i].nbsynapsesin = 0; 
    k--;
  }

  // Count the incoming synapses for each neuron:
  k=0;
  for(i=0; i<conf->nbsynapses; i++) {
    k++;
    net->n[conf->synapses[k]].nbsynapsesin++;
    k++;
  }

  // Allocate weight table in neurons, and the table of pointer to neuron
  // that represent the incoming synapses:
  for(i=0; i<conf->nbneurons; i++) {
    net->n[i].weight = (double*)malloc(net->n[i].nbsynapsesin*sizeof(double));
    net->n[i].synapsesin = (NEURON**)malloc(net->n[i].nbsynapsesin*sizeof(NEURON*));
    net->n[i].nbsynapsesin = 0;
  }

  // Link the incoming synapses with the neurons:
  k=0;
  for(i=0; i<conf->nbsynapses; i++) {
    k++;
    net->n[conf->synapses[k]].synapsesin[net->n[conf->synapses[k]].nbsynapsesin] = &(net->n[conf->synapses[k-1]]);
    net->n[conf->synapses[k]].nbsynapsesin++;
    k++;
  }

  // Initialization of the values, errors, and weights:
  for(i=0; i<net->nbneurons; i++) {
    for(j=0; j<net->n[i].nbsynapsesin; j++) {
      net->n[i].weight[j] = 1.0 * (double)rand() / RAND_MAX - 1.0/2;
    }
    net->n[i].bias = 1.0 * (double)rand() / RAND_MAX - 1.0/2;
    net->n[i].value = 0.0;
    net->n[i].value_prev = 0.0;
    net->n[i].error_prev = 0.0;
    net->n[i].error = 0.0;
  }

  return net;
}


void freernn(RNN * net) {
  int i;
  for(i=0; i<net->nbneurons; i++) {
    free(net->n[i].weight);
    free(net->n[i].synapsesin);
  }
  free(net->n);
  free(net->layersize);
  free(net);
}

void rnnget(RNN * net, double * out) {
  int i,k=0;
  // Store the output of the network in the variable table "out":
  for(i=net->nbneurons-1; i>=(net->nbneurons - net->layersize[net->layersize[0]]); i--) { out[k] = net->n[i].value; k++; }
}

void rnnsetstart(RNN * net) {
  int i,j;

  NEURON *ni,*nj;
  // For each neuron, update value_prev:
  for(i=0; i<net->nbneurons; i++) {
    ni = &(net->n[i]);
    // If NOT the output layer, then the value is already computed by tanh:
    if(ni->layer != net->layersize[0]-1) ni->value_prev = ni->value;
    else ni->value_prev = tanh(ni->value);
  }
}

void rnnset(RNN * net, double * in) {
  int i,j,k;
  double v;

  NEURON *ni,*nj;
  // For each neuron:
  for(i=0; i<net->nbneurons; i++) {
    ni = &(net->n[i]);
    // If it is an input neuron:
    if(i<net->layersize[1]) ni->value = in[i];
    else ni->value = ni->bias;

    // If the neuron is NOT in input layer, then  
    // compute the value from the incoming synapses:
    if(i>=net->layersize[1]) {
      // For each incoming synapse:
      for(j=0; j<ni->nbsynapsesin; j++) {
        nj = ni->synapsesin[j];
        // If the synapse is from input layer to output layer, then tanh the value:
        if(nj->layer == 0 && ni->layer == (net->layersize[0]-1)) {
          ////////////////////////////////////////////////////////////////////////
          // Uncomment the following line to enable reccurent links computation:
          ni->value += tanh(nj->value_prev) * ni->weight[j];
          ////////////////////////////////////////////////////////////////////////
        } else {
          // If it is a forward link/synapse:
          if(ni->layer > nj->layer) ni->value +=  nj->value * ni->weight[j];
          ////////////////////////////////////////////////////////////////////////
          // Uncomment the following line to enable reccurent links computation:
          else ni->value += nj->value_prev * ni->weight[j];
          ////////////////////////////////////////////////////////////////////////
        }
      }
    }
    // If NOT the input layer NOR the output layer, then tanh the value:
    if(ni->layer != 0 && ni->layer != net->layersize[0]-1) ni->value = tanh(ni->value);
  }
}


void rnnlearnstart(RNN * net) {
  int i;
  // For each neuron, initialize error_prev and value_prev for a
  // new training cycle:
  for(i=0; i<net->nbneurons; i++) { net->n[i].error_prev = 0.0; net->n[i].value_prev = 0.0; }
}

void rnnlearn(RNN * net, double * out, double learningrate) {
  int i,j,k;
  k=0;

  NEURON *ni,*nj;
  // Initialize error to zero for the output layer:
  for(i=net->nbneurons-1; i>=net->nbneurons-net->layersize[net->layersize[0]]; i--) net->n[i].error = 0.0;

  // Compute the error for output neurons, and 
  // initialize it to 0 for the other neurons:
  for(i=net->nbneurons-1; i>=0; i--) {
    ni = &(net->n[i]);
    // If ni is an output neuron, update the error:
    if(ni->layer == net->layersize[0]-1) {
      ni->error += ni->value - out[k];
      k++;
    } else {
      ni->error = 0.0;
    }
  }

  // Compute error for all other neurons:
  for(i=net->nbneurons-1; i>=0; i--) {
    ni = &(net->n[i]);
    // For each incoming synapse NOT from output layer:
    for(j=0; j<ni->nbsynapsesin; j++) {
      nj = ni->synapsesin[j];
      // If it is a forward link/synapse:
      if(ni->layer > nj->layer) nj->error += ni->error * ni->weight[j];
    }
  }

  // Update weights:
  for(i=0; i<net->nbneurons; i++) {
    ni = &(net->n[i]);
    double wchange,derivative;
    // For the output layer:
    if(ni->layer == net->layersize[0]-1) {
      derivative = ni->error * learningrate;
      // For each incoming synapse:
      for(j=0; j<ni->nbsynapsesin; j++) {
        nj = ni->synapsesin[j];
        wchange = derivative;
        // If it is a forward link/synapse:
        if(ni->layer > nj->layer) wchange *= nj->value;
        else wchange *= nj->value_prev;
        ni->weight[j] -= wchange;
        if(ni->weight[j] > 5) ni->weight[j] = 5;
        if(ni->weight[j] < -5) ni->weight[j] = -5;
      }
      ni->bias -= derivative;
      if(ni->bias > 5) ni->bias = 5;
      if(ni->bias < -5) ni->bias = -5;

    // For the other layers:
    } else {
      derivative = 1.0 - ni->value * ni->value;
      derivative *= ni->error * learningrate;
      // For each incoming synapse:
      for(j=0; j<ni->nbsynapsesin; j++) {
        nj = ni->synapsesin[j];
        wchange = derivative;
        // If it is a forward link/synapse:
        if(ni->layer > nj->layer) wchange *= nj->value;
        else wchange *= nj->value_prev;
        ni->weight[j] -= wchange;
      }
      ni->bias -= derivative;
    }
  }

  // Update error_prev:
  for(i=0; i<net->nbneurons; i++) net->n[i].error_prev = net->n[i].error;
}

int main() {
  srand(time(NULL));
  int layersize[] = {1, 25, 12, 1};
  int layersize_netrnn[] = { 4, 1, 25, 12, 1 };

  mlp * netmlp = create_mlp (4, layersize);
  srand(time(NULL));
  CONFIG * configrnn = createconfig(layersize_netrnn);
  RNN * netrnn = creaternn(configrnn);

  double inc,outc;

  double global_error = 1;
  double global_error2 = 1;

  int iter,i1=0,i2=0;


  //////////////////////////////////////////////////////
  // Training of the Multi-Layer Perceptron:
  //////////////////////////////////////////////////////
  while(global_error > 0.005 && i1<1000) {

    for (iter=0; iter < 100; iter++) {
      inc = 1.0*rand()/(RAND_MAX+1.0);
      outc = inc*inc;
      set_mlp(netmlp,&inc);
      learn_mlp(netmlp,&outc,0.03);
    }

    global_error = 0;
    int k;
    for (k=0; k < 100; k++) {
      inc = 1.0*rand()/(RAND_MAX+1.0);
      outc = inc*inc;
      set_mlp(netmlp,&inc);
      get_mlp(netmlp,&outc);
      mlp_float desired_out = inc*inc;
      global_error += (desired_out - outc)*(desired_out - outc);
    }         
    global_error /= 100;
    global_error = sqrt(global_error);

    i1++;
  }

  //////////////////////////////////////////////////////
  // Training of the Recurrent Neural Network:
  //////////////////////////////////////////////////////
  while(global_error2 > 0.005 && i2<1000) {

    rnnlearnstart(netrnn);

    for (iter=0; iter < 100; iter++) {
      inc = 1.0*rand()/(RAND_MAX+1.0);
      outc = inc*inc;
      rnnsetstart(netrnn);
      rnnset(netrnn,&inc);
      double outc2;

      rnnlearn(netrnn,&outc,0.03);
    }

    global_error2 = 0;
    int k;
    for (k=0; k < 100; k++) {
      inc = 1.0*rand()/(RAND_MAX+1.0);
      outc = inc*inc;
      double desired_out = inc*inc;

      rnnsetstart(netrnn);
      rnnset(netrnn,&inc);
      rnnget(netrnn,&outc);

      global_error2 += (desired_out - outc)*(desired_out - outc);
    }
    global_error2 /= 100;
    global_error2 = sqrt(global_error2);
    if(!isnormal(global_error2)) global_error2 = 100;
    i2++;
  }

  //////////////////////////////////////////////////////
  // Test of performance for the both networks:
  //////////////////////////////////////////////////////
  global_error = 0;
  global_error2 = 0;

  int k;
  for (k=0; k < 10000; k++) {
    inc = 1.0*rand()/(RAND_MAX+1.0);
    outc = inc*inc;
    double desired_out = inc*inc;

    rnnsetstart(netrnn);
    rnnset(netrnn,&inc);
    rnnget(netrnn,&outc);
    global_error2 += (desired_out - outc)*(desired_out - outc);

    set_mlp(netmlp,&inc);
    get_mlp(netmlp,&outc);
    global_error += (desired_out - outc)*(desired_out - outc);
  }

  global_error /= 10000;
  global_error = sqrt(global_error);
  printf("\n  MLP:    Training cycles: %5d    Error: %f",i1,global_error);
  global_error2 /= 10000;
  global_error2 = sqrt(global_error2);
  printf("\n  RNN:    Training cycles: %5d    Error: %f",i2,global_error2);

  free_mlp(netmlp);
  freeconfig(configrnn);
  freernn(netrnn);

}