我试图找到不完整圆的交点,如下图所示:
请参考此链接的解决方案: Detect semi-circle in opencv
我正在尝试将c ++代码转换为python代码,我已经转换了大多数代码,但是我不明白下面的两行c ++代码:
1)为什么半径需要除以25?
//内部最大距离可能取决于圆的大小
float maxInlierDist =半径/25.0f;
2)我完全不知道如何将此C ++行转换为python:
if(dt.at(cY,cX) 我希望任何人都能对此提供帮助,谢谢! 我已经尝试过搜索一些数学公式,但是找不到为什么半径需要除以25的原因。我在c ++中也不太好。 我的转换后代码: 这里最重要的问题是:如何知道/识别圆上的绿色采样点是离群点,蓝色点是离群点。# import the necessary packages
import numpy as np
import argparse
import cv2
import math
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--thres", required = True, help = "Path to the image")
ap.add_argument("-i", "--image", required = True, help = "Path to the image")
args = vars(ap.parse_args())
# load the image, clone it for output, and then convert it to grayscale
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.Canny(gray, 200,20)
# detect circles in the image
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1,minDist=300,
param1=200, param2=20,
minRadius=0, maxRadius=0)
#gray = (255*mask).astype(np.uint8)
dt = cv2.distanceTransform(255-gray, cv2.DIST_L2, 3)
cv2.imshow('Distance Transform', dt/255.0)
# ensure at least some circles were found
if circles is not None:
# convert the (x, y) coordinates and radius of the circles to integers
circles = np.round(circles[0, :]).astype("int")
# loop over the (x, y) coordinates and radius of the circles
for (x, y, r) in circles:
# draw the circle in the output image, then draw a rectangle
# corresponding to the center of the circle
cv2.circle(image, (x, y), r, (0, 255, 0), 2)
cv2.rectangle(image, (x - 5, y - 5), (x + 5, y + 5),
(0, 128,255),-1)
minInlierDist = 2.0
counter =0
inlier =0
radius=r
num_circle = 50
maxInlierDist=radius/25.0
if maxInlierDist<minInlierDist:
maxInlierDist=minInlierDist
for index in range(num_circle):
counter +=1
#angle = t * math.pi / 180
angle = 2 * math.pi * index / num_circle
cX = x + math.sin(angle)*radius
cY = y + math.cos(angle)*radius
centerxy = cX,cY
cv2.circle(image,tuple(np.array(centerxy,int)),3,(0,0,255),-1)
#if(dt.at<float>(cY,cX) < maxInlierDist) #c++ !!!I'm stucked here!!!
cv2.imshow("output", image)#np.hstack([image, gray]))
cv2.waitKey(0)
else:
print("no circles found!")
cv2.waitKey(0)
答案 0 :(得分:2)
1)选择1/25作为半径的任意分数,以获取最大可接受误差。
2)在opencv python中,矩阵存储为多维numpy数组。要访问(cY,cX)处的点,请使用dt [cY,cX]