用python查找不完整圆的交点

时间:2019-07-10 09:19:47

标签: python opencv cv2

我试图找到不完整圆的交点,如下图所示:

enter image description here

请参考此链接的解决方案: Detect semi-circle in opencv

我正在尝试将c ++代码转换为python代码,我已经转换了大多数代码,但是我不明白下面的两行c ++代码:

1)为什么半径需要除以25?

//内部最大距离可能取决于圆的大小

float maxInlierDist =半径/25.0f;

2)我完全不知道如何将此C ++行转换为python:

if(dt.at(cY,cX)

我希望任何人都能对此提供帮助,谢谢!

我已经尝试过搜索一些数学公式,但是找不到为什么半径需要除以25的原因。我在c ++中也不太好。

我的转换后代码:

# import the necessary packages
import numpy as np
import argparse
import cv2
import math

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--thres", required = True, help = "Path to the image")
ap.add_argument("-i", "--image", required = True, help = "Path to the image")
args = vars(ap.parse_args())

# load the image, clone it for output, and then convert it to grayscale
image = cv2.imread(args["image"])

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

gray = cv2.Canny(gray, 200,20)

# detect circles in the image
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1,minDist=300,  
                               param1=200, param2=20,
                               minRadius=0, maxRadius=0)

#gray = (255*mask).astype(np.uint8)

dt = cv2.distanceTransform(255-gray, cv2.DIST_L2, 3)

cv2.imshow('Distance Transform', dt/255.0)
# ensure at least some circles were found

if circles is not None:
    # convert the (x, y) coordinates and radius of the circles to integers
    circles = np.round(circles[0, :]).astype("int")

    # loop over the (x, y) coordinates and radius of the circles
    for (x, y, r) in circles:
        # draw the circle in the output image, then draw a rectangle
        # corresponding to the center of the circle
        cv2.circle(image, (x, y), r, (0, 255, 0), 2)
        cv2.rectangle(image, (x - 5, y - 5), (x + 5, y + 5), 
                             (0, 128,255),-1)

        minInlierDist = 2.0
        counter =0
        inlier =0
        radius=r
        num_circle = 50

        maxInlierDist=radius/25.0
        if maxInlierDist<minInlierDist:
            maxInlierDist=minInlierDist

        for index in range(num_circle):
            counter +=1
            #angle = t * math.pi / 180
            angle = 2 * math.pi * index / num_circle

            cX = x + math.sin(angle)*radius
            cY = y + math.cos(angle)*radius
            centerxy = cX,cY
            cv2.circle(image,tuple(np.array(centerxy,int)),3,(0,0,255),-1)

#if(dt.at<float>(cY,cX) < maxInlierDist) #c++ !!!I'm stucked here!!!

    cv2.imshow("output", image)#np.hstack([image, gray]))
    cv2.waitKey(0)
else:
    print("no circles found!")
    cv2.waitKey(0)

这里最重要的问题是:如何知道/识别圆上的绿色采样点是离群点,蓝色点是离群点。

1 个答案:

答案 0 :(得分:2)

1)选择1/25作为半径的任意分数,以获取最大可接受误差。

2)在opencv python中,矩阵存储为多维numpy数组。要访问(cY,cX)处的点,请使用dt [cY,cX]