我有两个高斯图:
x = np.linspace(-5,9,10000)
plot1=plt.plot(x,mlab.normpdf(x,2.5,1))
plot2=plt.plot(x,mlab.normpdf(x,5,1))
我希望找到两条曲线相交的点。有办法做到这一点吗?特别是我想找到它们相遇的x坐标的值。
答案 0 :(得分:13)
你想要找到x这样两个高斯函数具有相同的高度。(即相交)
你可以通过将两个高斯函数等同并求解x来实现。最后,您将得到一个二次方程,其系数与高斯均值和方差有关。这是最终结果:
import numpy as np
def solve(m1,m2,std1,std2):
a = 1/(2*std1**2) - 1/(2*std2**2)
b = m2/(std2**2) - m1/(std1**2)
c = m1**2 /(2*std1**2) - m2**2 / (2*std2**2) - np.log(std2/std1)
return np.roots([a,b,c])
m1 = 2.5
std1 = 1.0
m2 = 5.0
std2 = 1.0
result = solve(m1,m2,std1,std2)
输出结果为:
array([ 3.75])
您可以绘制找到的交叉点:
x = np.linspace(-5,9,10000)
plot1=plt.plot(x,mlab.normpdf(x,m1,std1))
plot2=plt.plot(x,mlab.normpdf(x,m2,std2))
plot3=plt.plot(result,mlab.normpdf(result,m1,std1),'o')
情节将是:
如果你的高斯人有多个交叉点,代码也会找到所有这些交叉点(例如m1 = 2.5,std1 = 3.0,m2 = 5.0,std2 = 1.0):
答案 1 :(得分:0)
这是一个基于纯粹的numpy的解决方案,它也适用于除高斯曲线以外的曲线。
def get_intersection_locations(y1,y2,test=False,x=None):
"""
return indices of the intersection point/s.
"""
idxs=np.argwhere(np.diff(np.sign(y1 - y2))).flatten()
if test:
x=range(len(y1)) if x is None else x
plt.figure(figsize=[2.5,2.5])
ax=plt.subplot()
ax.plot(x,y1,color='r',label='line1',alpha=0.5)
ax.plot(x,y2,color='b',label='line2',alpha=0.5)
_=[ax.axvline(x[i],color='k') for i in idxs]
_=[ax.text(x[i],ax.get_ylim()[1],f"{x[i]:1.1f}",ha='center',va='bottom') for i in idxs]
ax.legend(bbox_to_anchor=[1,1])
ax.set(xlabel='x',ylabel='density')
return idxs
# single intersection
x = np.arange(-10, 10, 0.001)
y1=sc.stats.norm.pdf(x,-2,2)
y2=sc.stats.norm.pdf(x,2,3)
get_intersection_locations(y1=y1,y2=y2,x=x,test=True) # returns indice/s array([10173])
# double intersection
x = np.arange(-10, 10, 0.001)
y1=sc.stats.norm.pdf(x,-2,1)
y2=sc.stats.norm.pdf(x,2,3)
get_intersection_locations(y1=y1,y2=y2,x=x,test=True)