我正在尝试证明FOL的等效性。我在使用DeMorgan定律作为量词时遇到了麻烦,
~ (exists x. P(x)) <-> forall x. ~P(x)
我尝试从Coq.Logic.Classical_Pred_Type。应用not_ex_all_not,并检查了StackOverflow(Coq convert non exist to forall statement,Convert ~exists to forall in hypothesis),但都没有解决这个问题。
Theorem t3: forall (T: Type), forall p q: T -> Prop, forall r: T -> T -> Prop,
~(exists (x: T), ((p x) /\ (exists (y: T), ((q y) /\ ~(r x y)))))
<-> forall (x y: T), ((p x) -> (((q y) -> (r x y)))).
Proof.
intros T p q r.
split.
- intros H.
apply not_ex_all_not.
我收到此错误:
In environment
T : Type
p, q : T → Prop
r : T → T → Prop
H : ¬ (∃ x : T, p x ∧ (∃ y : T, q y ∧ ¬ r x y))
Unable to unify
"∀ (U : Type) (P : U → Prop), ¬ (∃ n : U, P n) → ∀ n : U, ¬ P n"
with "∀ x y : T, p x → q y → r x y".
我希望DeMorgan的定律可以应用到目标中,从而导致存在的否定性否定。
答案 0 :(得分:3)
让我们观察一下我们可以从H
中得到什么:
~ (exists x : T, p x /\ (exists y : T, q y /\ ~ r x y))
=> (not exists <-> forall not)
forall x : T, ~ (p x /\ (exists y : T, q y /\ ~ r x y))
=> (not (A and B) <-> A implies not B)
forall x : T, p x -> ~ (exists y : T, q y /\ ~ r x y)
=>
forall x : T, p x -> forall y : T, ~ (q y /\ ~ r x y)
=>
forall x : T, p x -> forall y : T, q y -> ~ (~ r x y)
最后我们对结论进行了两次否定。如果您不介意使用经典公理,我们可以应用NNPP
来剥离它,就可以了。
以下是等效的Coq证明:
Require Import Classical.
(* I couldn't find this lemma in the stdlib, so here is a quick proof. *)
Lemma not_and_impl_not : forall P Q : Prop, ~ (P /\ Q) <-> (P -> ~ Q).
Proof. tauto. Qed.
Theorem t3: forall (T: Type), forall p q: T -> Prop, forall r: T -> T -> Prop,
~(exists (x: T), ((p x) /\ (exists (y: T), ((q y) /\ ~(r x y)))))
<-> forall (x y: T), ((p x) -> (((q y) -> (r x y)))).
Proof.
intros T p q r.
split.
- intros H x y Hp Hq.
apply not_ex_all_not with (n := x) in H.
apply (not_and_impl_not (p x)) in H; try assumption.
apply not_ex_all_not with (n := y) in H.
apply (not_and_impl_not (q y)) in H; try assumption.
apply NNPP in H. assumption.
以上是向前推论。如果您想倒退(通过对目标应用引理而不是假设),事情会变得有些困难,因为您需要先构建精确的形式,然后才能将引理应用于目标。这也是为什么您的apply
失败的原因。 Coq不会自动找到开箱即用的位置和方式。
(apply
是一种相对较低的策略。 an advanced Coq feature允许对子项应用命题引理。)
Require Import Classical.
Lemma not_and_impl_not : forall P Q : Prop, ~ (P /\ Q) <-> (P -> ~ Q).
Proof. tauto. Qed.
Theorem t3: forall (T: Type), forall p q: T -> Prop, forall r: T -> T -> Prop,
~(exists (x: T), ((p x) /\ (exists (y: T), ((q y) /\ ~(r x y)))))
<-> forall (x y: T), ((p x) -> (((q y) -> (r x y)))).
Proof.
intros T p q r.
split.
- intros H x y Hp Hq.
apply NNPP. revert dependent Hq. apply not_and_impl_not.
revert dependent y. apply not_ex_all_not.
revert dependent Hp. apply not_and_impl_not.
revert dependent x. apply not_ex_all_not. apply H.
实际上,有一种名为firstorder
的自动化策略,(您猜到了)它可以解决一阶直觉逻辑。请注意,由于NNPP
无法处理经典逻辑,因此仍然需要firstorder
。
Theorem t3: forall (T: Type), forall p q: T -> Prop, forall r: T -> T -> Prop,
~(exists (x: T), ((p x) /\ (exists (y: T), ((q y) /\ ~(r x y)))))
<-> forall (x y: T), ((p x) -> (((q y) -> (r x y)))).
Proof.
intros T p q r.
split.
- intros H x y Hp Hq. apply NNPP. firstorder.
- firstorder. Qed.